论文标题
通过神经网络发现暗物质光环密度曲线的基础
Discovering the building blocks of dark matter halo density profiles with neural networks
论文作者
论文摘要
暗物质光环的密度曲线通常是使用安装在松弛光环群体密度曲线的经验公式建模的。我们提出了一个神经网络模型,该模型经过训练,可以从包含每个光环到暗物质密度曲线的原始密度字段学习映射。我们表明该模型将广泛使用的Navarro-Frenk-White(NFW)轮廓恢复到病毒半径,并可以描述晕孔外部轮廓的可变性。神经网络体系结构由一个有监督的编码器框架组成,该框架首先将密度输入压缩到低维的潜在表示中,然后输出$ρ(r)$,以获得半径$ r $的任何所需值。潜在表示包含模型预测密度曲线的所有信息。这使我们能够通过量化表示形式和Halos的地面真相曲线之间的相互信息来解释潜在表示。二维表示足以准确地模拟直至病毒半径的密度曲线。但是,需要三维表示来描述超出病毒半径以外的外部轮廓。表示形式中的附加维度包含有关暗物质光环的外部曲线中的插入材料的信息,从而发现了Halos的飞溅边界,而无需先前了解Halos的动态历史。
The density profiles of dark matter halos are typically modeled using empirical formulae fitted to the density profiles of relaxed halo populations. We present a neural network model that is trained to learn the mapping from the raw density field containing each halo to the dark matter density profile. We show that the model recovers the widely-used Navarro-Frenk-White (NFW) profile out to the virial radius, and can additionally describe the variability in the outer profile of the halos. The neural network architecture consists of a supervised encoder-decoder framework, which first compresses the density inputs into a low-dimensional latent representation, and then outputs $ρ(r)$ for any desired value of radius $r$. The latent representation contains all the information used by the model to predict the density profiles. This allows us to interpret the latent representation by quantifying the mutual information between the representation and the halos' ground-truth density profiles. A two-dimensional representation is sufficient to accurately model the density profiles up to the virial radius; however, a three-dimensional representation is required to describe the outer profiles beyond the virial radius. The additional dimension in the representation contains information about the infalling material in the outer profiles of dark matter halos, thus discovering the splashback boundary of halos without prior knowledge of the halos' dynamical history.