论文标题
使用下一代星系调查的原始非高斯的贝叶斯田间级别的推断
Bayesian field-level inference of primordial non-Gaussianity using next-generation galaxy surveys
论文作者
论文摘要
在密度领域中检测和测量原始起源的非高斯标志是下一代星系调查的主要科学目标。该信号将使我们能够确定原始物理过程并约束宇宙通胀的模型。尽管传统方法利用了一组有限的星系分布统计摘要来限制原始非高斯性,但我们介绍了贝叶斯向前模型整个三维星系调查的野外级别方法。我们的方法自然,完全自愿利用整个大规模结构,例如高阶统计,特殊的速度字段和依赖比例依赖的星系偏见,以提取有关局部非高斯参数的信息,$ \ fnl $。我们通过通过模拟星系数据模拟\ sdssiii {}的相关特征的各种测试来证明我们的方法的性能,例如调查,并使用\ textit {stage iv}模拟数据集进行了其他测试。这些测试表明,该方法通过准确处理测量几何形状,噪声和未知的星系偏见来侵犯$ \ fnl $的无偏见。我们证明我们的方法可以实现$σ_{\ fnl} \大约8.78 $的约束,因为\ sdsssiii {} - 喜欢数据,改善了因子$ \ sim 2.5 $,而不是当前发布的约束。使用下一代模拟数据进行的测试表明,通过足够高的分辨率,可行的进一步改进是可行的。此外,结果表明,我们的方法可以始终如一地边缘化数据模型的所有滋扰参数。该方法进一步推断了三维原始密度领域,提供了探索原始物理学额外签名的机会。
Detecting and measuring a non-Gaussian signature of primordial origin in the density field is a major science goal of next-generation galaxy surveys. The signal will permit us to determine primordial physics processes and constrain models of cosmic inflation. While traditional approaches utilise a limited set of statistical summaries of the galaxy distribution to constrain primordial non-Gaussianity, we present a field-level approach by Bayesian forward-modelling the entire three-dimensional galaxy survey. Our method naturally and fully self-consistently exploits the entirety of the large-scale structure, e.g., higher-order statistics, peculiar velocity fields, and scale-dependent galaxy bias, to extract information on the local non-Gaussianity parameter, $\fnl$. We demonstrate the performance of our approach through various tests with mock galaxy data emulating relevant features of the \sdssiii{}-like survey, and additional tests with a \textit{Stage IV} mock data set. These tests reveal that the method infers unbiased values of $\fnl$ by accurately handling survey geometries, noise, and unknown galaxy biases. We demonstrate that our method can achieve constraints of $σ_{\fnl} \approx 8.78$ for \sdssiii{}-like data, an improvement of a factor $\sim 2.5$ over currently published constraints. Tests with next-generation mock data show that significant further improvements are feasible with sufficiently high resolution. Furthermore, the results demonstrate that our method can consistently marginalise all nuisance parameters of the data model. The method further provides an inference of the three-dimensional primordial density field, providing opportunities to explore additional signatures of primordial physics.