论文标题
Aemulus Project V:Boss星系小型聚类的宇宙学约束
The Aemulus Project V: Cosmological constraint from small-scale clustering of BOSS galaxies
论文作者
论文摘要
我们使用基于模拟的两个点统计模拟模拟器分析了Boss星系的聚类测量值。我们专注于红移空间相关函数的单极和四极,以及投影相关函数,尺度为$ 0.1 \ sim60〜h^{ - 1} $ mpc。尽管我们的仿真基于具有一般相对论的$ W $ CDM,但我们包括光晕速度字段的缩放参数,$γ_F$,定义为相对于GR预测的光晕速度场的幅度。我们将老板数据分为三个红移箱。在其他宇宙学参数,星系偏差参数和速度缩放参数上进行边缘化之后,我们发现$fσ_{8}(z = 0.25)= 0.413 \ pm0.031 $,$fσ__{8}(z = 0.4)= 0.470 \ pm0.0.0.0.0.0.0.0.0.0. $fσ_ 0.396 \ PM0.022 $。与使用平面$λ$ CDM型号的普朗克观测值相比,我们的结果分别降低了$1.9σ$,$0.3σ$和$3.4σ$。这些结果与非线性尺度上的其他最新基于模拟的结果一致,包括Boss Lowz星系的弱透镜测量值,Eboss LRG的两点聚类以及对Boss Lowz的独立聚类分析。所有这些结果通常与$γ_f^{1/2}σ_8\约0.75 $的组合一致。但是,我们注意到,假设GR,即$γ_f= 1 $,则Boss数据非常适合。我们不能在非线性量表上排除星系偏置模型中未知的系统误差,但是近距离数据和建模将增强我们对Galaxy-Halo连接的理解,并为超出标准模型以外的新物理学提供了强有力的测试。
We analyze clustering measurements of BOSS galaxies using a simulation-based emulator of two-point statistics. We focus on the monopole and quadrupole of the redshift-space correlation function, and the projected correlation function, at scales of $0.1\sim60~h^{-1}$Mpc. Although our simulations are based on $w$CDM with general relativity (GR), we include a scaling parameter of the halo velocity field, $γ_f$, defined as the amplitude of the halo velocity field relative to the GR prediction. We divide the BOSS data into three redshift bins. After marginalizing over other cosmological parameters, galaxy bias parameters, and the velocity scaling parameter, we find $fσ_{8}(z=0.25) = 0.413\pm0.031$, $fσ_{8}(z=0.4) = 0.470\pm0.026$ and $fσ_{8}(z=0.55) = 0.396\pm0.022$. Compared with Planck observations using a flat $Λ$CDM model, our results are lower by $1.9σ$, $0.3σ$ and $3.4σ$ respectively. These results are consistent with other recent simulation-based results at non-linear scales, including weak lensing measurements of BOSS LOWZ galaxies, two-point clustering of eBOSS LRGs, and an independent clustering analysis of BOSS LOWZ. All these results are generally consistent with a combination of $γ_f^{1/2}σ_8\approx 0.75$. We note, however, that the BOSS data is well fit assuming GR, i.e. $γ_f=1$. We cannot rule out an unknown systematic error in the galaxy bias model at non-linear scales, but near-future data and modeling will enhance our understanding of the galaxy--halo connection, and provide a strong test of new physics beyond the standard model.