论文标题
部分可观测时空混沌系统的无模型预测
Numerical simulations of semilinear Klein--Gordon equation in the de Sitter spacetime with structure-preserving scheme
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We perform some simulations of the semilinear Klein--Gordon equation in the de Sitter spacetime. We reported the accurate numerical results of the equation with the structure-preserving scheme (SPS) in an earlier publication (Tsuchiya and Nakamura in J. Comput. Appl. Math. \textbf{361}: 396--412, 2019). To investigate the factors for the stability and accuracy of the numerical results with SPS, we perform some simulations with three discretized formulations. The first formulation is the discretized equations with SPS, the second one is with SPS that replaces the second-order difference as the standard second-order central difference, and the third one is with SPS that replaces the discretized nonlinear term as the standard discretized expression. As a result, the above two replacements in SPS are found to be effective for accurate simulations. On the other hand, the ingenuity of replacing the second-order difference in the first formulation is not effective for maintaining the stability of the simulations.