论文标题
在观察量方面,克尔黑洞的质量和旋转:对红移的拖动效果
Mass and spin of Kerr black holes in terms of observational quantities: The dragging effect on the redshift
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
In this work, we elaborate on the development of a general relativistic formalism that allows one to analytically express the mass and spin parameters of the Kerr black hole in terms of observational data: the total redshift and blueshift of photons emitted by geodesic massive particles revolving the black hole and their orbital parameters. Thus, we present concise closed formulas for the mass and spin parameters of the Kerr black hole in terms of few directly observed quantities in the case of equatorial circular orbits either when the black hole is static or is moving with respect to a distant observer. Furthermore, we incorporate the gravitational dragging effect generated by the rotating nature of the Kerr black hole into the analysis and elucidate its non-trivial contribution to the expression for the light bending parameter and the frequency shifts of photons emitted by orbiting particles that renders simple symmetric expressions for the kinematic redshift and blueshift. We also incorporate the dependency of the frequency shift on the azimuthal angle, a fact that allows one to express the total redshift/blueshift along any point of the orbit of the revolving particle for the cases when the black hole is both static or moving with respect to us. These formulas allow one to compute the Kerr black hole parameters by applying this general relativistic formalism to astrophysical systems like the megamaser accretion disks orbiting supermassive black holes at the core of active galactic nuclei. Our results open a new window to implement parameter estimation studies to constrain black hole variables, and they can be generalized to black hole solutions beyond Einstein gravity.