论文标题

部分可观测时空混沌系统的无模型预测

Nineteen vortex equations and integrability

论文作者

Gudnason, Sven Bjarke

论文摘要

Manton最近讨论的五个五个可集成的涡旋方程进行了扩展,因此它包括相对论的BPS Chern-Simons涡旋,总共产生了十九个涡流方程。并非所有十九个漩涡方程都是可集成的,但是发现了四个新的集成方程,我们将它们推广到无限的许多集成涡流方程,每个集合都用其整数订单$ n $表示。它们的集成性类似于已知的情况,但产生了不同的(广义)Baptista几何形状,其中Baptista度量是Higgs Field对背景度量的共形恢复。特别是,巴蒂斯塔歧管具有圆锥形的奇异性。在其Baptista歧管中的每个涡流中,jackiw-pi,陶伯斯,波波夫和ambjørn-olesen涡流在每个涡流中的圆锥形赤字为$2π$,这些方程式的高阶概括也可与较大的恒定曲率集成,并且每个vortex零的$2πn$锥形缺陷。然后,我们将叠加定律推广,该定律以如何在已知溶液中添加涡旋的陶器涡流而闻名。我们发现,尽管使用Baptista Metric和Popov方程添加了Taubes和Popov方程与自己有关,但Ambjørn-Operen和Jackiw-pi涡旋是添加的。最后,我们发现涡旋方程之间的许多进一步关系,例如我们发现,Chern-Simons涡流可以解释为自己解决方案的Baptista歧管上的Taubes涡流。

The class of five integrable vortex equations discussed recently by Manton is extended so it includes the relativistic BPS Chern-Simons vortices, yielding a total of nineteen vortex equations. Not all the nineteen vortex equations are integrable, but four new integrable equations are discovered and we generalize them to infinitely many sets of four integrable vortex equations, with each set denoted by its integer order $n$. Their integrability is similar to the known cases, but give rise to different (generalized) Baptista geometries, where the Baptista metric is a conformal rescaling of the background metric by the Higgs field. In particular, the Baptista manifolds have conical singularities. Where the Jackiw-Pi, Taubes, Popov and Ambjørn-Olesen vortices have conical deficits of $2π$ at each vortex zero in their Baptista manifolds, the higher-order generalizations of these equations are also integrable with larger constant curvatures and a $2πn$ conical deficit at each vortex zero. We then generalize a superposition law, known for Taubes vortices of how to add vortices to a known solution, to all the integrable vortex equations. We find that although the Taubes and the Popov equations relate to themselves, the Ambjørn-Olesen and Jackiw-Pi vortices are added by using the Baptista metric and the Popov equation. Finally, we find many further relations between vortex equations, e.g. we find that the Chern-Simons vortices can be interpreted as Taubes vortices on the Baptista manifold of their own solution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源