论文标题
会话推荐:一个大型人工智能挑战
Conversational Recommendation: A Grand AI Challenge
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Animated avatars, which look and talk like humans, are iconic visions of the future of AI-powered systems. Through many sci-fi movies we are acquainted with the idea of speaking to such virtual personalities as if they were humans. Today, we talk more and more to machines like Apple's Siri, e.g., to ask them for the weather forecast. However, when asked for recommendations, e.g., for a restaurant to go to, the limitations of such devices quickly become obvious. They do not engage in a conversation to find out what we might prefer, they often do not provide explanations for what they recommend, and they may have difficulties remembering what was said one minute earlier. Conversational recommender systems promise to address these limitations. In this paper, we review existing approaches to build such systems, which developments we observe today, which challenges are still open and why the development of conversational recommenders represents one of the next grand challenges of AI.