论文标题

商品市场的可变波动弹性模型

The Variable Volatility Elasticity Model from Commodity Markets

论文作者

Gong, Fuzhou, Wang, Ting

论文摘要

在本文中,我们根据众所周知的差异弹性(CEV)模型提出并研究了一种新颖的连续时间模型,以描述资产价格过程。基本思想是,从随机分析的角度来看,CEV模型的挥发性弹性不能被视为常数。为了解决这个问题,我们从波动性弹性的角度推断出资产的价格过程,提出恒定的波动弹性(CVE)模型,并进一步得出更一般的可变波动率弹性(VVE)模型。此外,我们的模型可以描述商品市场中现有的波动性和资产价格之间的正相关性,而CEV模型只能描述负相关。通过对金融市场的实证研究,许多资产,尤其是商品,经常在某个时间段内显示出这种正相关现象,这表明我们的模型具有强大的实际应用价值。最后,我们根据模型提供了欧洲期权的明确定价公式。该公式具有便利的优雅形式,可以计算出来,这与著名的黑色choles公式类似,并且对衍生品市场的研究具有重要意义。

In this paper, we propose and study a novel continuous-time model, based on the well-known constant elasticity of variance (CEV) model, to describe the asset price process. The basic idea is that the volatility elasticity of the CEV model can not be treated as a constant from the perspective of stochastic analysis. To address this issue, we deduce the price process of assets from the perspective of volatility elasticity, propose the constant volatility elasticity (CVE) model, and further derive a more general variable volatility elasticity (VVE) model. Moreover, our model can describe the positive correlation between volatility and asset prices existing in the commodity markets, while CEV model can only describe the negative correlation. Through the empirical research on the financial market, many assets, especially commodities, often show this positive correlation phenomenon in some time periods, which shows that our model has strong practical application value. Finally, we provide the explicit pricing formula of European options based on our model. This formula has an elegant form convenient to calculate, which is similarly to the renowned Black-Scholes formula and of great significance to the research of derivatives market.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源