论文标题
频率选择的网格到网格重新采样,用于颜色的颜色上采样的点云
Frequency-Selective Mesh-to-Mesh Resampling for Color Upsampling of Point Clouds
论文作者
论文摘要
随着虚拟和增强现实应用程序的使用越来越多,点云数据的重要性上升。点云的高质量捕获仍然很昂贵,因此,出现了点云超级分辨率或点云上采样技术的需求。在本文中,我们提出了一种插值方案,用于彩色提升三维色点云。当点云代表三维空间中对象的表面,我们首先将表面局部变换到二维平面。其次,我们建议将新型频率选择性的网格重新采样(FSMMR)技术用于2D中的点插值。 FSMMR生成了在分散点上基函数的加权叠加模型。然后评估该模型的最终点,以增加原始点云的分辨率。评估表明,我们的方法表现优于常见的插值方案。 Jaguar Point Cloud的视觉比较突显了我们上采样结果的质量。 FSMMR的高性能可用于输入点云的各种采样密度。
With the increased use of virtual and augmented reality applications, the importance of point cloud data rises. High-quality capturing of point clouds is still expensive and thus, the need for point cloud super-resolution or point cloud upsampling techniques emerges. In this paper, we propose an interpolation scheme for color upsampling of three-dimensional color point clouds. As a point cloud represents an object's surface in three-dimensional space, we first conduct a local transform of the surface into a two-dimensional plane. Secondly, we propose to apply a novel Frequency-Selective Mesh-to-Mesh Resampling (FSMMR) technique for the interpolation of the points in 2D. FSMMR generates a model of weighted superpositions of basis functions on scattered points. This model is then evaluated for the final points in order to increase the resolution of the original point cloud. Evaluation shows that our approach outperforms common interpolation schemes. Visual comparisons of the jaguar point cloud underlines the quality of our upsampling results. The high performance of FSMMR holds for various sampling densities of the input point cloud.