论文标题

非专业主义者的选择可以提高irace的表现

Non-Elitist Selection Can Improve the Performance of Irace

论文作者

Ye, Furong, Vermetten, Diederick L., Doerr, Carola, Bäck, Thomas

论文摘要

现代优化策略,例如进化算法,蚂蚁菌落算法,贝叶斯优化技术等。带有几个参数,可以在优化过程中引导其行为。为了获得高性能算法实例,已经开发了自动化算法配置技术。最受欢迎的工具之一是Irace,它可以评估顺序种族中的配置,利用迭代统计测试来丢弃性能不佳的配置。在比赛结束时,使用贪婪的截断选择,从未丢弃的幸存者配置中选择了一组精英配置。我们研究了两种替代选择方法:一种是保持最佳幸存者,并从一组幸存者中随机选择剩余的配置,而另一种则采用熵来最大程度地提高精英的多样性。这些方法经过测试,用于调整蚂蚁菌落优化算法,以解决旅行销售人员问题以及二次分配问题,并为满足性问题调整精确的树搜索求解器。实验结果表明,与IRACE的默认选择相比,测试的基准测试结果有所改善。此外,获得的结果表明,非专业人士可以获得多种算法配置,这鼓励我们探索更广泛的解决方案以了解算法的行为。

Modern optimization strategies such as evolutionary algorithms, ant colony algorithms, Bayesian optimization techniques, etc. come with several parameters that steer their behavior during the optimization process. To obtain high-performing algorithm instances, automated algorithm configuration techniques have been developed. One of the most popular tools is irace, which evaluates configurations in sequential races, making use of iterated statistical tests to discard poorly performing configurations. At the end of the race, a set of elite configurations are selected from those survivor configurations that were not discarded, using greedy truncation selection. We study two alternative selection methods: one keeps the best survivor and selects the remaining configurations uniformly at random from the set of survivors, while the other applies entropy to maximize the diversity of the elites. These methods are tested for tuning ant colony optimization algorithms for traveling salesperson problems and the quadratic assignment problem and tuning an exact tree search solver for satisfiability problems. The experimental results show improvement on the tested benchmarks compared to the default selection of irace. In addition, the obtained results indicate that non-elitist can obtain diverse algorithm configurations, which encourages us to explore a wider range of solutions to understand the behavior of algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源