论文标题
为第二强引力镜头数据挑战制定胜利的策略
Developing a Victorious Strategy to the Second Strong Gravitational Lensing Data Challenge
论文作者
论文摘要
强烈的镜头是对星系和簇中物质分布的有力探测,也是宇宙学的相关工具。由于这些天文学对象的稀有性和图像复杂性,对具有深度学习的强力透镜的分析已成为一种流行的方法。下一代调查将为从这些对象中获得科学的更多机会,并越来越多地分析数据量。但是,找到强烈的镜头是具有挑战性的,因为它们的数量密度低于星系的数量级。因此,需要特定的强镜搜索算法才能发现具有高纯度和较低误报率的最高系统数量。对更好算法的需求促使开发社区数据科学竞赛的发展,名为强力镜头挑战(SGLC)。这项工作介绍了用于设计II SGLC中得分最高的算法的深度学习策略和方法。我们讨论了该数据集使用的方法,即合适的体系结构的选择,尤其是使用具有两个分支的网络与不同分辨率中的图像一起使用及其优化。我们还讨论了可检测性限制,经验教训以及在调查中定义量身定制的体系结构的前景,与一般性相比。最后,我们发布模型,并讨论最佳选择,以轻松使模型适应具有不同仪器的调查的数据集。这项工作有助于迈出对具有深度学习框架的强镜的高效,适应性和准确分析的一步。
Strong Lensing is a powerful probe of the matter distribution in galaxies and clusters and a relevant tool for cosmography. Analyses of strong gravitational lenses with Deep Learning have become a popular approach due to these astronomical objects' rarity and image complexity. Next-generation surveys will provide more opportunities to derive science from these objects and an increasing data volume to be analyzed. However, finding strong lenses is challenging, as their number densities are orders of magnitude below those of galaxies. Therefore, specific Strong Lensing search algorithms are required to discover the highest number of systems possible with high purity and low false alarm rate. The need for better algorithms has prompted the development of an open community data science competition named Strong Gravitational Lensing Challenge (SGLC). This work presents the Deep Learning strategies and methodology used to design the highest-scoring algorithm in the II SGLC. We discuss the approach used for this dataset, the choice for a suitable architecture, particularly the use of a network with two branches to work with images in different resolutions, and its optimization. We also discuss the detectability limit, the lessons learned, and prospects for defining a tailor-made architecture in a survey in contrast to a general one. Finally, we release the models and discuss the best choice to easily adapt the model to a dataset representing a survey with a different instrument. This work helps to take a step towards efficient, adaptable and accurate analyses of strong lenses with deep learning frameworks.