论文标题

通过基于辅助功能的迭代更新来估计子样本中一致的时间延迟

Estimation of Consistent Time Delays in Subsample via Auxiliary-Function-Based Iterative Updates

论文作者

Yamaoka, Kouei, Wakabayashi, Yukoh, Ono, Nobutaka

论文摘要

在本文中,我们提出了一种用于估计多个时间延迟(TDS)的新算法。由于TD是传感器阵列信号处理技术的基本空间提示,因此已经对其进行了许多估算的方法。其中大多数,包括基于广义的跨相关方法(CC)方法,重点是如何在两个传感器之间估计TD。然后,可以通过将这些方法应用于每对参考传感器和另一种方法来轻松适应多个TD。但是,这些成对方法只能使用选定传感器获得的部分信息,从而导致TD估计值不一致和估计精度有限。相比之下,我们提出了整个TD参数的联合优化,其中考虑了从所有传感器中获得的空间信息。我们还将有关TD参数的一致约束引入观察模型。然后,我们将多维CC(MCC)视为目标函数,该目标函数是根据最大似然估计得出的。为了最大化MCC(这是一个非convex函数),我们为MCC和设计有效的更新规则得出了辅助功能。我们还估计了传递函数以支持TD估计的幅度,在该估计中我们在非负约束下最大化了瑞利商。我们实验分析了所提出方法的基本特征,并评估其在TD估计中的有效性。代码将在https://github.com/onolab-tmu/auxtde上找到。

In this paper, we propose a new algorithm for the estimation of multiple time delays (TDs). Since a TD is a fundamental spatial cue for sensor array signal processing techniques, many methods for estimating it have been studied. Most of them, including generalized cross correlation (CC)-based methods, focus on how to estimate a TD between two sensors. These methods can then be easily adapted for multiple TDs by applying them to every pair of a reference sensor and another one. However, these pairwise methods can use only the partial information obtained by the selected sensors, resulting in inconsistent TD estimates and limited estimation accuracy. In contrast, we propose joint optimization of entire TD parameters, where spatial information obtained from all sensors is taken into account. We also introduce a consistent constraint regarding TD parameters to the observation model. We then consider a multidimensional CC (MCC) as the objective function, which is derived on the basis of maximum likelihood estimation. To maximize the MCC, which is a nonconvex function, we derive the auxiliary function for the MCC and design efficient update rules. We additionally estimate the amplitudes of the transfer functions for supporting the TD estimation, where we maximize the Rayleigh quotient under the non-negative constraint. We experimentally analyze essential features of the proposed method and evaluate its effectiveness in TD estimation. Code will be available at https://github.com/onolab-tmu/AuxTDE.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源