论文标题

回归的广义分数匹配

Generalized Score Matching for Regression

论文作者

Xu, Jiazhen, Scealy, Janice L., Wood, Andrew T. A., Zou, Tao

论文摘要

许多具有棘手的归一化常数的概率模型可以扩展到包含协变量。由于对这些模型的确切可能性的评估很困难甚至不可能,因此提出了得分匹配,以避免对归一化常数的明确计算。在文献中,到目前为止,得分匹配仅针对观测值独立且分布相同的模型(IID)。但是,IID假设在回归型模型的传统固定设计设置中不存在。为了处理对这些协变量依赖性模型的估计,本文为独立和不一定在连续和离散响应的一般框架下提供了一种新的分数匹配方法,但不一定在一般框架下分布了相同的分布数据,其中包括一种新颖的广义分数匹配方法,用于计数响应回归。我们证明,在轻度规律性条件下,我们提出的分数匹配估计量是一致的,并且渐近地正常。理论结果由模拟研究和一个真实数据示例支持。此外,我们的仿真结果表明,与近似最大似然估计相比,广义分数匹配会产生估计值,而在博士出版数据的应用中,偏见大大较小。

Many probabilistic models that have an intractable normalizing constant may be extended to contain covariates. Since the evaluation of the exact likelihood is difficult or even impossible for these models, score matching was proposed to avoid explicit computation of the normalizing constant. In the literature, score matching has so far only been developed for models in which the observations are independent and identically distributed (IID). However, the IID assumption does not hold in the traditional fixed design setting for regression-type models. To deal with the estimation of these covariate-dependent models, this paper presents a new score matching approach for independent but not necessarily identically distributed data under a general framework for both continuous and discrete responses, which includes a novel generalized score matching method for count response regression. We prove that our proposed score matching estimators are consistent and asymptotically normal under mild regularity conditions. The theoretical results are supported by simulation studies and a real-data example. Additionally, our simulation results indicate that, compared to approximate maximum likelihood estimation, the generalized score matching produces estimates with substantially smaller biases in an application to doctoral publication data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源