论文标题
组合学中的Frobenius方法
Frobenius methods in combinatorics
论文作者
论文摘要
我们调查了主要特征和组合交换代数中方法之间的相互作用产生的结果。我们展示了通过Frobenius证明的边缘理想,曲折品种,史丹利 - 赖斯纳环和初始理想的结果。我们还讨论了使用Frobenius样图获得的单一理想的结果。最后,我们介绍了$ f $ pure-pure戒指的结果,这些戒指灵感来自斯坦利·里斯纳(Stanley-Reisner)戒指的工作。
We survey results produced from the interaction between methods in prime characteristic and combinatorial commutative algebra. We showcase results for edge ideals, toric varieties, Stanley-Reisner rings, and initial ideals that were proven via Frobenius. We also discuss results for monomial ideals obtained using Frobenius-like maps. Finally, we present results for $F$-pure rings that were inspired by work done for Stanley-Reisner rings.