论文标题
SHREC 2021:冷冻电子断层图中的分类
SHREC 2021: Classification in cryo-electron tomograms
论文作者
论文摘要
冷冻电子层析成像(Cryo-ET)是一种成像技术,可以在近本条件下对宏观分子组件的三维可视化。 Cryo-ET面临许多挑战,主要是信噪比低,无法从各个角度获得图像。计算方法是分析冷冻电子断层图的关键。 为了促进计算方法中的创新,我们生成了一个新型的模拟数据集,以基准测试层图中生物大分子的定位和分类的不同方法。我们公开可用的数据集包含十个模拟细胞样卷的层析成像重建。每个卷都包含十二种不同类型的复合物,大小,功能和结构各不相同。 在本文中,我们评估了发现和分类蛋白质的七种不同方法。七个研究小组提出了通过基于学习的方法获得的结果,并在模拟数据集上进行了培训,以及基线模板匹配(TM),这是一种在冷冻网络研究中广泛使用的传统方法。我们表明,基于学习的方法比TM可以实现明显更好的本地化和分类性能。我们还通过实验证实,所有方法的粒度和性能之间存在负相关关系。
Cryo-electron tomography (cryo-ET) is an imaging technique that allows three-dimensional visualization of macro-molecular assemblies under near-native conditions. Cryo-ET comes with a number of challenges, mainly low signal-to-noise and inability to obtain images from all angles. Computational methods are key to analyze cryo-electron tomograms. To promote innovation in computational methods, we generate a novel simulated dataset to benchmark different methods of localization and classification of biological macromolecules in tomograms. Our publicly available dataset contains ten tomographic reconstructions of simulated cell-like volumes. Each volume contains twelve different types of complexes, varying in size, function and structure. In this paper, we have evaluated seven different methods of finding and classifying proteins. Seven research groups present results obtained with learning-based methods and trained on the simulated dataset, as well as a baseline template matching (TM), a traditional method widely used in cryo-ET research. We show that learning-based approaches can achieve notably better localization and classification performance than TM. We also experimentally confirm that there is a negative relationship between particle size and performance for all methods.