论文标题
采样轨迹优化的路径积分方法的复杂性
Sampling Complexity of Path Integral Methods for Trajectory Optimization
论文作者
论文摘要
在决策和控制中使用随机抽样的使用变得很受欢迎,可以轻松访问可以生成和计算实时机器人应用的多个随机轨迹的图形处理单元。与顺序优化相反,基于采样的方法可以利用并行计算来维持恒定的控制环频率。受到其在机器人应用中的广泛适用性的启发,我们计算出适用于路径积分方法中考虑的一般非线性系统的采样复杂性结果,这是一种基于采样的方法。结果确定了所需的样品数量,以满足从最佳值的估计控制信号的给定误差界和预定义的风险概率。采样复杂性结果表明,根据成本的预期,估计的控制值的方差在上限。然后,我们将结果应用于具有二次成本和指示功能成本的线性时变动力系统,以避免限制集。
The use of random sampling in decision-making and control has become popular with the ease of access to graphic processing units that can generate and calculate multiple random trajectories for real-time robotic applications. In contrast to sequential optimization, the sampling-based method can take advantage of parallel computing to maintain constant control loop frequencies. Inspired by its wide applicability in robotic applications, we calculate a sampling complexity result applicable to general nonlinear systems considered in the path integral method, which is a sampling-based method. The result determines the required number of samples to satisfy the given error bounds of the estimated control signal from the optimal value with the predefined risk probability. The sampling complexity result shows that the variance of the estimated control value is upper-bounded in terms of the expectation of the cost. Then we apply the result to a linear time-varying dynamical system with quadratic cost and an indicator function cost to avoid constraint sets.