论文标题

使用陨石坑作为地标的月球漫游者本地化

Lunar Rover Localization Using Craters as Landmarks

论文作者

Matthies, Larry, Daftry, Shreyansh, Tepsuporn, Scott, Cheng, Yang, Atha, Deegan, Swan, R. Michael, Ravichandar, Sanjna, Ono, Masahiro

论文摘要

迄今为止,行星漫游者的机上定位功能通过集成了每个驱动器期间的车轮频能测定法,视觉探测器和惯性测量的组合,以相对于每个驱动器的开始,以跟踪位置。在每个驱动器的末端,通过将图像或局部地图匹配从车上到轨道侦察图像或距离漫游车的当前位置的大区域的轨道侦察图像或地图,使用了更全球的参考框架中的人类操作员的位置更新。自主漫游者驱动器的距离有限,因此累积的相对导航误差不会冒着将漫游者驱动到轨道图像已知的危害的可能性。但是,最近已经研究了几个流浪者任务概念,这些概念需要在GitL周期之间进行更长的驱动器,尤其是对于月球。这些概念需要更大的自主权,以最大程度地减少gitl周期才能实现如此大的范围。机上全球本地化是这种自治的关键要素。过去已经研究了多种技术,用于车载漫游车全球本地化,但是令人满意的解决方案尚未出现。对于月球,无处不在的陨石坑提供了一种新的可能性,其中涉及从轨道上绘制陨石坑,然后用摄像头识别火山口地标,或者在漫游车上识别出激光雷达。这种方法在月球上到处都是适用,不需要像其他方法那样从轨道上进行高分辨率立体成像,并且有可能始终以5至10 m精度的顺序实现位置知识。本文介绍了我们对基于火山口的月球漫游器定位的技术方法,并使用来自机载激光镜头或立体声摄像机的3D点云数据对火山口检测提出了初步结果,并在板上图像中使用了阴影提示。

Onboard localization capabilities for planetary rovers to date have used relative navigation, by integrating combinations of wheel odometry, visual odometry, and inertial measurements during each drive to track position relative to the start of each drive. At the end of each drive, a ground-in-the-loop (GITL) interaction is used to get a position update from human operators in a more global reference frame, by matching images or local maps from onboard the rover to orbital reconnaissance images or maps of a large region around the rover's current position. Autonomous rover drives are limited in distance so that accumulated relative navigation error does not risk the possibility of the rover driving into hazards known from orbital images. However, several rover mission concepts have recently been studied that require much longer drives between GITL cycles, particularly for the Moon. These concepts require greater autonomy to minimize GITL cycles to enable such large range; onboard global localization is a key element of such autonomy. Multiple techniques have been studied in the past for onboard rover global localization, but a satisfactory solution has not yet emerged. For the Moon, the ubiquitous craters offer a new possibility, which involves mapping craters from orbit, then recognizing crater landmarks with cameras and-or a lidar onboard the rover. This approach is applicable everywhere on the Moon, does not require high resolution stereo imaging from orbit as some other approaches do, and has potential to enable position knowledge with order of 5 to 10 m accuracy at all times. This paper describes our technical approach to crater-based lunar rover localization and presents initial results on crater detection using 3D point cloud data from onboard lidar or stereo cameras, as well as using shading cues in monocular onboard imagery.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源