论文标题
深色光子星:形成和作为暗物质子结构的作用
Dark Photon Stars: Formation and Role as Dark Matter Substructure
论文作者
论文摘要
在通货膨胀期间存在的任何具有非零质量的新向量玻色子(一个“暗光子”或“ proca boson”)是由于真空波动而自动产生的,并且可以构成观察到的所有或大量的暗物质密度,如Graham,Mardon,Mardon和Rajendran所示。我们证明,利用分析和数值研究,这种情况意味着纯粹由引力相互作用和量子效应的相互作用引起的极富富裕的暗物质亚结构。由于原始密度扰动的大小与量子压力相关的规模之间存在显着的参数重合,因此暗物质的很大一部分不可避免地倒入重力绑定的孤子子,它们是完全量子相干对象。这些“深色光子星”或“ proca star”的中心密度通常是$ 10^6 $的因子,比本地背景暗物质密度大,并且它们的特征性质量为$ 10^{ - 16} m_ \ odot(10^{ - 5} { - 5} { - 5} {\ rm ev} {\ rm ev}/m)^use us y $ m:在孤子产生期间和后产生后,最初将能量密度的比较部分存储在长期寿命的准正常模式中。此外,孤子被特征性的“模糊”暗物质光环包围,其中相对于通常的病毒性暗物质期望,量子波样性能也得到了增强。在更大的尺度上形成的较低密度紧凑型光晕,质量比孤子大的$ \ sim 10^5 $大。我们认为,至少,唯一的孤儿可能会在今天生存,而不会受到潮湿的破坏。正如我们在同伴论文中所讨论的那样,我们预期的这种丰富的子结构也来自其他深色光子暗物质生产机制,它打开了广泛的新直接和间接检测可能性。
Any new vector boson with non-zero mass (a `dark photon' or `Proca boson') that is present during inflation is automatically produced at this time from vacuum fluctuations and can comprise all or a substantial fraction of the observed dark matter density, as shown by Graham, Mardon, and Rajendran. We demonstrate, utilising both analytic and numerical studies, that such a scenario implies an extremely rich dark matter substructure arising purely from the interplay of gravitational interactions and quantum effects. Due to a remarkable parametric coincidence between the size of the primordial density perturbations and the scale at which quantum pressure is relevant, a substantial fraction of the dark matter inevitably collapses into gravitationally bound solitons, which are fully quantum coherent objects. The central densities of these `dark photon star', or `Proca star', solitons are typically a factor $10^6$ larger than the local background dark matter density, and they have characteristic masses of $10^{-16} M_\odot (10^{-5}{\rm eV}/m)^{3/2}$, where $m$ is the mass of the vector. During and post soliton production a comparable fraction of the energy density is initially stored in, and subsequently radiated from, long-lived quasi-normal modes. Furthermore, the solitons are surrounded by characteristic `fuzzy' dark matter halos in which quantum wave-like properties are also enhanced relative to the usual virialized dark matter expectations. Lower density compact halos, with masses a factor of $\sim 10^5$ greater than the solitons, form at much larger scales. We argue that, at minimum, the solitons are likely to survive to the present day without being tidally disrupted. This rich substructure, which we anticipate also arises from other dark photon dark matter production mechanisms, opens up a wide range of new direct and indirect detection possibilities, as we discuss in a companion paper.