论文标题

互联网天文台和前哨的时间相关性

Temporal Correlation of Internet Observatories and Outposts

论文作者

Kepner, Jeremy, Jones, Michael, Andersen, Daniel, Buluç, Aydın, Byun, Chansup, Claffy, K, Davis, Timothy, Arcand, William, Bernays, Jonathan, Bestor, David, Bergeron, William, Gadepally, Vijay, Grant, Daniel, Houle, Micheal, Hubbell, Matthew, Jananthan, Hayden, Klein, Anna, Meiners, Chad, Milechin, Lauren, Morris, Andrew, Mullen, Julie, Pisharody, Sandeep, Prout, Andrew, Reuther, Albert, Rosa, Antonio, Samsi, Siddharth, Stetson, Doug, Yee, Charles, Michaleas, Peter

论文摘要

互联网已成为现代文明的关键组成部分,需要科学探索,类似于努力了解土地,海洋,空气和太空环境。了解流量的基线统计分布对于对互联网的科学理解至关重要。将来自不同Internet观测值和哨所的数据相关联可能是获得对这些分布的见解的有用工具。这项工作将最大的互联网望远镜(Caida Darknet望远镜)的来源与商业前哨站(Greynoise Honeyfarm)的来源进行了比较。这些位置均未积极发射互联网流量,并提供了对未经请求的互联网流量(主要是僵尸网络和扫描仪)的独特观察。新开发的Graphblas Hyperspace矩阵和D4M的关联阵列技术能够在显着尺度上对这些数据进行有效分析。 CAIDA来源通过Zipf-Mandelbrot分布近似。在6个月的时间里,在Caida望远镜中,最明亮的(最高频率)来源的70%一直通过Greynoise Honeyfarm中的同时观测来检测。随着源头变暗(降低频率)和观察值之间的时间差,该重叠量下降。看到CAIDA源的可能性与亮度的对数成正比。时间相关性通过修饰的cauchy分布很好地描述。这些观察结果与相关的高频源相关,该源在一个月的时间范围内漂移。

The Internet has become a critical component of modern civilization requiring scientific exploration akin to endeavors to understand the land, sea, air, and space environments. Understanding the baseline statistical distributions of traffic are essential to the scientific understanding of the Internet. Correlating data from different Internet observatories and outposts can be a useful tool for gaining insights into these distributions. This work compares observed sources from the largest Internet telescope (the CAIDA darknet telescope) with those from a commercial outpost (the GreyNoise honeyfarm). Neither of these locations actively emit Internet traffic and provide distinct observations of unsolicited Internet traffic (primarily botnets and scanners). Newly developed GraphBLAS hyperspace matrices and D4M associative array technologies enable the efficient analysis of these data on significant scales. The CAIDA sources are well approximated by a Zipf-Mandelbrot distribution. Over a 6-month period 70\% of the brightest (highest frequency) sources in the CAIDA telescope are consistently detected by coeval observations in the GreyNoise honeyfarm. This overlap drops as the sources dim (reduce frequency) and as the time difference between the observations grows. The probability of seeing a CAIDA source is proportional to the logarithm of the brightness. The temporal correlations are well described by a modified Cauchy distribution. These observations are consistent with a correlated high frequency beam of sources that drifts on a time scale of a month.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源