论文标题
桥接预训练的语言模型和手工制作的功能,用于无监督的POS标签
Bridging Pre-trained Language Models and Hand-crafted Features for Unsupervised POS Tagging
论文作者
论文摘要
近年来,大规模训练的语言模型(PLM)在大多数NLP任务中取得了非凡的进步。但是,在无监督的POS标记任务中,使用PLM的工作很少,并且无法实现最新的(SOTA)性能。 He等人提出的一种Guassian HMM变体产生了最近的SOTA性能。 (2018)。但是,作为一种生成模型,HMM做出了非常强大的独立性假设,因此将PLM的contexualized单词表示非常具有挑战性。在这项工作中,我们首次提出了无监督POS标记的神经条件随机场自动编码器(CRF-AE)模型。 CRF-AE的歧视性编码器可以直接合并Elmo单词表示。此外,受到功能丰富的HMM的启发,我们将手工制作的功能重新引入了CRF-AE的解码器。最后,实验清楚地表明,我们的模型在宾夕法尼亚州立树库和多语言通用依赖性Treebank v2.0上的优势优于先前的最先进模型。
In recent years, large-scale pre-trained language models (PLMs) have made extraordinary progress in most NLP tasks. But, in the unsupervised POS tagging task, works utilizing PLMs are few and fail to achieve state-of-the-art (SOTA) performance. The recent SOTA performance is yielded by a Guassian HMM variant proposed by He et al. (2018). However, as a generative model, HMM makes very strong independence assumptions, making it very challenging to incorporate contexualized word representations from PLMs. In this work, we for the first time propose a neural conditional random field autoencoder (CRF-AE) model for unsupervised POS tagging. The discriminative encoder of CRF-AE can straightforwardly incorporate ELMo word representations. Moreover, inspired by feature-rich HMM, we reintroduce hand-crafted features into the decoder of CRF-AE. Finally, experiments clearly show that our model outperforms previous state-of-the-art models by a large margin on Penn Treebank and multilingual Universal Dependencies treebank v2.0.