论文标题
分析抛物线半线性随机PDES的改良Euler方案
Analysis of a modified Euler scheme for parabolic semilinear stochastic PDEs
论文作者
论文摘要
我们提出了标准线性隐式欧积分器的修改,以通过添加剂时空白噪声驱动的抛物线半线性随机PDE的弱近似。新方法可以轻松地与有限差分方法结合使用,用于空间离散化。与标准方法相比,所提出的方法显示出具有改善的定性特性。首先,对于任何时间步长,始终保留溶液的空间规律性。其次,所提出的方法保留了无限尺寸Ornstein-Uhlenbeck过程的高斯不变分布。在一般环境中,所提出方法的弱收敛顺序显示等于$ 1/2 $,例如标准Euler方案。当非线性是梯度时,考虑吉布斯不变分布的近似值时,将获得更强的弱近似结果:一个人在$ 1/2 $ $ 1/2 $的总变化距离中获得近似值,这对标准方法不满意。这是文献中这种类型的第一个结果。分析的一个关键点是对所提出的修改后的EULER方案的解释为加速的指数Euler方案应用于修改后的随机演化方程。最后,结果表明,所提出的方法可以应用于为一类缓慢快速的多尺度系统设计渐近保存方案,并构建Markov链蒙特卡洛方法,该方法在无限维度中定义明确。我们还重新审视了标准和加速指数EULER方案的分析,并证明了新的结果,并在总变化距离中近似,这有助于说明拟议的修改后的Euler方案的行为。
We propose a modification of the standard linear implicit Euler integrator for the weak approximation of parabolic semilinear stochastic PDEs driven by additive space-time white noise. The new method can easily be combined with a finite difference method for the spatial discretization. The proposed method is shown to have improved qualitative properties compared with the standard method. First, for any time-step size, the spatial regularity of the solution is preserved, at all times. Second, the proposed method preserves the Gaussian invariant distribution of the infinite dimensional Ornstein--Uhlenbeck process obtained when the nonlinearity is absent, for any time-step size. The weak order of convergence of the proposed method is shown to be equal to $1/2$ in a general setting, like for the standard Euler scheme. A stronger weak approximation result is obtained when considering the approximation of a Gibbs invariant distribution, when the nonlinearity is a gradient: one obtains an approximation in total variation distance of order $1/2$, which does not hold for the standard method. This is the first result of this type in the literature. A key point in the analysis is the interpretation of the proposed modified Euler scheme as the accelerated exponential Euler scheme applied to a modified stochastic evolution equation. Finally, it is shown that the proposed method can be applied to design an asymptotic preserving scheme for a class of slow-fast multiscale systems, and to construct a Markov Chain Monte Carlo method which is well-defined in infinite dimension. We also revisit the analysis of the standard and the accelerated exponential Euler scheme, and we prove new results with approximation in the total variation distance, which serve to illustrate the behavior of the proposed modified Euler scheme.