论文标题

揭示多元时间序列的高阶组织

Unveiling the higher-order organization of multivariate time series

论文作者

Santoro, Andrea, Battiston, Federico, Petri, Giovanni, Amico, Enrico

论文摘要

时间序列分析已被证明是表征生物学,神经科学和经济学的几种现象,并了解其一些基本动态特征的一种有力方法。尽管已经提出了多种方法来分析多元时间序列,但其中大多数忽略了非双向相互作用对新兴动态的影响。在这里,我们提出了一个新型框架,以表征多元时间序列中高阶依赖性的时间演变。使用网络分析和拓扑结构,我们表明,与基于成对统计的传统工具不同,我们的框架可牢固地区分耦合混沌图的各种时空状态,包括混沌动力学阶段和各种类型的同步。因此,使用模拟动态过程中的高阶共透明模式作为指导,我们强调和量化来自大脑功能活动,金融市场和流行病的数据中高阶模式的签名。总体而言,我们的方法为多元时间序列的高阶组织提供了新的启示,从而更好地表征了真实数据固有的动态群体依赖性。

Time series analysis has proven to be a powerful method to characterize several phenomena in biology, neuroscience and economics, and to understand some of their underlying dynamical features. Despite a plethora of methods have been proposed for the analysis of multivariate time series, most of them neglect the effect of non-pairwise interactions on the emerging dynamics. Here, we propose a novel framework to characterize the temporal evolution of higher-order dependencies within multivariate time series. Using network analysis and topology, we show that, unlike traditional tools based on pairwise statistics, our framework robustly differentiates various spatiotemporal regimes of coupled chaotic maps, including chaotic dynamical phases and various types of synchronization. Hence, using the higher-order co-fluctuation patterns in simulated dynamical processes as a guide, we highlight and quantify signatures of higher-order patterns in data from brain functional activity, financial markets, and epidemics. Overall, our approach sheds new light on the higher-order organization of multivariate time series, allowing a better characterization of dynamical group dependencies inherent to real-world data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源