论文标题

多模式学习用于预测神经胶质瘤的基因型

Multi-modal learning for predicting the genotype of glioma

论文作者

Wei, Yiran, Chen, Xi, Zhu, Lei, Zhang, Lipei, Schönlieb, Carola-Bibiane, Price, Stephen J., Li, Chao

论文摘要

异氯酸盐脱氢酶(IDH)基因突变是神经胶质瘤诊断和预后的必不可少的生物标志物。通过将局灶性肿瘤图像和几何特征与来自MRI得出的脑网络特征相结合,可以更好地预测神经胶质瘤基因型。卷积神经网络在预测IDH突变时表现出合理的性能,但是,这无法从非欧盟数据中学习,例如几何和网络数据。在这项研究中,我们提出了一个使用三个独立编码器的多模式学习框架来提取局灶性肿瘤图像,肿瘤几何和全球脑网络的特征。为了减轻扩散MRI的有限可用性,我们开发了一种自制的方法来从解剖多序列MRI产生脑网络。此外,要从大脑网络中提取与肿瘤相关的特征,我们为大脑网络编码器设计了分层注意模块。此外,我们设计了双层多模式的对比损失,以使多模式特征对齐并应对局灶性肿瘤和全球大脑的域间隙。最后,我们提出了一个加权种群图,以整合基因型预测的多模式特征。测试集的实验结果表明,所提出的模型的表现优于基线深度学习模型。消融实验验证了框架不同组件的性能。可视化的解释对应于并进行进一步验证的临床知识。总之,提出的学习框架为预测神经胶质瘤的基因型提供了一种新颖的方法。

The isocitrate dehydrogenase (IDH) gene mutation is an essential biomarker for the diagnosis and prognosis of glioma. It is promising to better predict glioma genotype by integrating focal tumor image and geometric features with brain network features derived from MRI. Convolutions neural networks show reasonable performance in predicting IDH mutation, which, however, cannot learn from non-Euclidean data, e.g., geometric and network data. In this study, we propose a multi-modal learning framework using three separate encoders to extract features of focal tumor image, tumor geometrics and global brain networks. To mitigate the limited availability of diffusion MRI, we develop a self-supervised approach to generate brain networks from anatomical multi-sequence MRI. Moreover, to extract tumor-related features from the brain network, we design a hierarchical attention module for the brain network encoder. Further, we design a bi-level multi-modal contrastive loss to align the multi-modal features and tackle the domain gap at the focal tumor and global brain. Finally, we propose a weighted population graph to integrate the multi-modal features for genotype prediction. Experimental results on the testing set show that the proposed model outperforms the baseline deep learning models. The ablation experiments validate the performance of different components of the framework. The visualized interpretation corresponds to clinical knowledge with further validation. In conclusion, the proposed learning framework provides a novel approach for predicting the genotype of glioma.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源