论文标题
局部单位性:切割饲养的繁殖者和本地重态度化
Local Unitarity: cutting raised propagators and localising renormalisation
论文作者
论文摘要
差分横截面的局部单位性(LU)表示局部意识到了Kinoshita-Lee-Nauenberg定理预测的红外奇异性的取消。在这项工作中,我们解决了剩下的两个挑战,以实现LU形式主义内的实际高环计算。第一个涉及LU代表对具有凸起的繁殖器的图表的概括。解决此问题的解决方案导致分布库克斯基规则的概括。第二个涉及紫外线和虚假软奇异点的正则化,并使用基于Bogoliubov的R-Operation的完全自动化和局部的重态化程序来解决。我们详细介绍了Hybrid $ \ Overline {\ text {MS}} $和shell方案的全阶结构,其唯一的分析输入是单尺度真空图。使用这项新技术,我们为NLO的两个多腿流程提供(半)包含在内的结果,其研究限制到N3LO的研究限制,并在动量空间上以数值为单位计算出的第一个物理NNLO横截面,即用于这些流程$γ^** \ rightarrow J j j $和$γ^* \ frigch* \ rightorw t \}
The Local Unitarity (LU) representation of differential cross-sections locally realises the cancellations of infrared singularities predicted by the Kinoshita-Lee-Nauenberg theorem. In this work we solve the two remaining challenges to enable practical higher-loop computations within the LU formalism. The first concerns the generalisation of the LU representation to graphs with raised propagators. The solution to this problem results in a generalisation of distributional Cutkosky rules. The second concerns the regularisation of ultraviolet and spurious soft singularities, solved using a fully automated and local renormalisation procedure based on Bogoliubov's R-operation. We detail an all-order construction for the hybrid $\overline{\text{MS}}$ and On-Shell scheme whose only analytic input is single-scale vacuum diagrams. Using this novel technology, we provide (semi-)inclusive results for two multi-leg processes at NLO, study limits of individual supergraphs up to N3LO and present the first physical NNLO cross-sections computed fully numerically in momentum-space, namely for the processes $γ^* \rightarrow j j$ and $γ^* \rightarrow t \bar{t}$.