论文标题

从文本资源中有针对性地提取时间事实,以改善时间问题,以回答知识库

Targeted Extraction of Temporal Facts from Textual Resources for Improved Temporal Question Answering over Knowledge Bases

论文作者

Kannen, Nithish, Sharma, Udit, Neelam, Sumit, Khandelwal, Dinesh, Ikbal, Shajith, Karanam, Hima, Subramaniam, L Venkata

论文摘要

知识基础问题回答(KBQA)系统的目标是通过从知识库(KB)检索到的相关事实来回答复杂的自然语言问题。这些系统面临的主要挑战之一是由于不完整的KB和实体/关系链接错误等因素,他们无法检索所有相关事实。在本文中,我们针对处理特定类别的问题的系统提出了这一特定挑战,称为时间问题,答案派生涉及对事实的推理,主张各种事件的时间/时间间隔。我们提出了一种新颖的方法,只要有针对性的时间事实提取技术在KB中无法从KB中检索时间事实。我们使用问题的$λ$表达来逻辑地表示组件事实以及得出答案所需的推理步骤。这使我们能够发现那些未能从KB中检索的事实并生成文本查询,以开放域的问题回答方式从文本资源中提取它们。我们在基准时间问题上评估了我们考虑Wikidata和Wikipedia作为KB和文本资源的基准时间问题。实验结果表明,$ \ sim $ 30 \%的答案准确性相对提高,证明了我们方法的有效性。

Knowledge Base Question Answering (KBQA) systems have the goal of answering complex natural language questions by reasoning over relevant facts retrieved from Knowledge Bases (KB). One of the major challenges faced by these systems is their inability to retrieve all relevant facts due to factors such as incomplete KB and entity/relation linking errors. In this paper, we address this particular challenge for systems handling a specific category of questions called temporal questions, where answer derivation involve reasoning over facts asserting point/intervals of time for various events. We propose a novel approach where a targeted temporal fact extraction technique is used to assist KBQA whenever it fails to retrieve temporal facts from the KB. We use $λ$-expressions of the questions to logically represent the component facts and the reasoning steps needed to derive the answer. This allows us to spot those facts that failed to get retrieved from the KB and generate textual queries to extract them from the textual resources in an open-domain question answering fashion. We evaluated our approach on a benchmark temporal question answering dataset considering Wikidata and Wikipedia respectively as the KB and textual resource. Experimental results show a significant $\sim$30\% relative improvement in answer accuracy, demonstrating the effectiveness of our approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源