论文标题
自动化的临床编码:什么,为什么和我们在哪里?
Automated Clinical Coding: What, Why, and Where We Are?
论文作者
论文摘要
临床编码是将患者健康记录中的医疗信息转换为结构化代码的任务,以便它们可用于统计分析。这是一项认知且耗时的任务,遵循标准过程,以达到高水平的一致性。自动化系统可以支持临床编码,以提高该过程的效率和准确性。我们介绍了自动临床编码的想法,并从人工智能(AI)和自然语言处理(NLP)的角度总结了其挑战,基于文献,我们在过去两年半(2019年底至2022年初)的项目经验,并与苏格兰和英国的临床编码专家进行了讨论。我们的研究揭示了应用于临床编码的当前基于深度学习的方法与现实实践中的解释性和一致性之间的差距。基于知识的方法代表和推理了标准,可以解释的任务过程,可能需要将其纳入基于深度学习的临床编码方法中。尽管面临技术和组织挑战,但自动化的临床编码是AI的一项有希望的任务。需要参与编码人员。开发和部署基于AI的自动化系统需要实现很多目标,以支持未来五年及以后的编码。
Clinical coding is the task of transforming medical information in a patient's health records into structured codes so that they can be used for statistical analysis. This is a cognitive and time-consuming task that follows a standard process in order to achieve a high level of consistency. Clinical coding could potentially be supported by an automated system to improve the efficiency and accuracy of the process. We introduce the idea of automated clinical coding and summarise its challenges from the perspective of Artificial Intelligence (AI) and Natural Language Processing (NLP), based on the literature, our project experience over the past two and half years (late 2019 - early 2022), and discussions with clinical coding experts in Scotland and the UK. Our research reveals the gaps between the current deep learning-based approach applied to clinical coding and the need for explainability and consistency in real-world practice. Knowledge-based methods that represent and reason the standard, explainable process of a task may need to be incorporated into deep learning-based methods for clinical coding. Automated clinical coding is a promising task for AI, despite the technical and organisational challenges. Coders are needed to be involved in the development process. There is much to achieve to develop and deploy an AI-based automated system to support coding in the next five years and beyond.