论文标题
无穷小的Torelli,用于加权的完整交叉点和某些Fano三倍
Infinitesimal Torelli for weighted complete intersections and certain Fano threefolds
论文作者
论文摘要
我们概括了用雅各比环中的乘法来描述无穷小的托雷利图的经典方法,以与加权投影空间中的准平滑型完整交集的情况。作为应用程序,我们证明了Picard Rank 1,Index 1,Legure 4的三倍的小椭圆形Fano的无限摩尔斯定理,并研究了自动形态组在同胞学方面的作用。本文的结果用于证明Lang-vojta在后续纸中对此类Fano三倍的模量的猜想。
We generalize the classical approach of describing the infinitesimal Torelli map in terms of multiplication in a Jacobi ring to the case of quasi-smooth complete intersections in weighted projective space. As an application, we prove the infinitesimal Torelli theorem for hyperelliptic Fano threefolds of Picard rank 1, index 1, degree 4 and study the action of the automorphism group on cohomology. The results of this paper are used to prove Lang-Vojta's conjecture for the moduli of such Fano threefolds in a follow-up paper.