论文标题

并非所有要点都是平等的:学习3D LiDAR点云的高效基于点的检测器

Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds

论文作者

Zhang, Yifan, Hu, Qingyong, Xu, Guoquan, Ma, Yanxin, Wan, Jianwei, Guo, Yulan

论文摘要

我们研究了3D激光点云的有效对象检测的问题。为了降低内存和计算成本,现有的基于点的管道通常采用任务不合时宜的随机抽样或最远的点采样来逐渐下样采样点云,尽管事实并非所有点对对象检测任务同样重要。特别是,前景点本质上比对象探测器的背景点更重要。由此激励,我们在本文中提出了一个高效的基于单阶段的3D检测器,称为IA-SSD。我们方法的关键是利用两个可学习的,面向任务的,实例意识到的降采样策略,以分层选择属于感兴趣对象的前景点。此外,我们还引入了上下文质心感知模块,以进一步估计精确的实例中心。最后,我们按照仅编码架构来构建IA-SSD,以提高效率。在几个大规模检测基准上进行的广泛实验证明了我们的IA-SSD的竞争性能。由于记忆的占地面积低和高度的并行性,它在Kitti数据集上使用单个RTX2080TI GPU实现了80多个帧的速度。该代码可在\ url {https://github.com/yifanzhang713/ia-ssd}中获得。

We study the problem of efficient object detection of 3D LiDAR point clouds. To reduce the memory and computational cost, existing point-based pipelines usually adopt task-agnostic random sampling or farthest point sampling to progressively downsample input point clouds, despite the fact that not all points are equally important to the task of object detection. In particular, the foreground points are inherently more important than background points for object detectors. Motivated by this, we propose a highly-efficient single-stage point-based 3D detector in this paper, termed IA-SSD. The key of our approach is to exploit two learnable, task-oriented, instance-aware downsampling strategies to hierarchically select the foreground points belonging to objects of interest. Additionally, we also introduce a contextual centroid perception module to further estimate precise instance centers. Finally, we build our IA-SSD following the encoder-only architecture for efficiency. Extensive experiments conducted on several large-scale detection benchmarks demonstrate the competitive performance of our IA-SSD. Thanks to the low memory footprint and a high degree of parallelism, it achieves a superior speed of 80+ frames-per-second on the KITTI dataset with a single RTX2080Ti GPU. The code is available at \url{https://github.com/yifanzhang713/IA-SSD}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源