论文标题
球状簇中的恒星碰撞:对第一代恒星的初始质量功能的约束
Stellar collisions in globular clusters: Constraints on the initial mass function of the first generation of stars
论文作者
论文摘要
球形簇在第一代恒星($ n({\ rm g1})/n({\ rm tot})$之间显示出反相关性,而簇的质量功能($α__{pd} $)的斜率对于大型大型群集来说尤为重要。在二元介导的碰撞方案的框架内,是在球状簇中形成第二代恒星的,我们测试了G1星对$(n({\ rm G1}})/N({{\ rm g1})/n({\ rmmmmmmmmmmmmmmmmmm rmm rmm rmm rrmα_α_),G1星对$(n({\ rm g1})/n(n({\ rm g1})的影响,我们使用一个简单的碰撞模型,该模型只有两个输入参数,即G1星的IMF的形状以及凝聚形成第二代恒星的G1恒星的比例。我们表明,碰撞过程的可变效率是必要的,以解释$(n({\ rm g1})/n({\ rm tot}))) - α__{pd} $ procanteration;但是,抗相关性中的散布只能通过IMF的变化来解释,尤其是质量间隔$ \ $ \ $ \ $ \ $(0.1-0.5)m $ _ {\ odot} $的斜率变化。我们的结果表明,为了解释$(n({\ rm g1})/n({{\ rm tot}))) - α__{pd} $关系,有必要在此质量中调用斜率中的变化范围$ \ \ \ \ \ \ \ \ \ \ \ \ \ $ \ of $ \ of \ your \ your \ your \ of。用类似Kroupa的破碎功率定律来解释,这转化为平均质量的变化,约为$ \ \ \ $ 0.2 $至0.55 $ m $ _ {\ odot} $。这种变化水平与银河系中年轻恒星簇观察到的水平是一致的,并且可能反映出G1群体形成G1群体或可能表明恒星在主序列上恒星之前发生protostellar胚胎之间发生碰撞的球状簇祖细胞云的物理条件的变化。
Globular clusters display an anticorrelation between the fraction of the first generation of stars ($N({\rm G1})/N({\rm tot})$) and the slope of the present-day mass function of the clusters ($α_{pd}$), which is particularly significant for massive clusters. In the framework of the binary-mediated collision scenario for the formation of the second-generation stars in globular clusters, we test the effect of a varying stellar initial mass function (IMF) of the G1 stars on the $(N({\rm G1})/N({\rm tot}))-α_{pd}$ anticorrelation. We use a simple collision model that has only two input parameters, the shape of the IMF of G1 stars and the fraction of G1 stars that coalesce to form second-generation stars. We show that a variable efficiency of the collision process is necessary in order to explain the $(N({\rm G1})/N({\rm tot}))-α_{pd}$ anticorrelation; however, the scatter in the anticorrelation can only be explained by variations in the IMF, and in particular by variations in the slope in the mass interval $\approx$ (0.1-0.5) M$_{\odot}$. Our results indicate that in order to explain the scatter in the $(N({\rm G1})/N({\rm tot}))-α_{pd}$ relation, it is necessary to invoke variations in the slope in this mass range between $\approx -0.9$ and $\approx -1.9$. Interpreted in terms of a Kroupa-like broken power law, this translates into variations in the mean mass of between $\approx 0.2$ and $0.55$ M$_{\odot}$. This level of variation is consistent with what is observed for young stellar clusters in the Milky Way and may reflect variations in the physical conditions of the globular cluster progenitor clouds at the time the G1 population formed or may indicate the occurrence of collisions between protostellar embryos before stars settle on the main sequence.