论文标题

多视图3D重建的真实世界数据集

A Real World Dataset for Multi-view 3D Reconstruction

论文作者

Shrestha, Rakesh, Hu, Siqi, Gou, Minghao, Liu, Ziyuan, Tan, Ping

论文摘要

我们介绍了日常桌面对象的998 3D型号的数据集以及其847,000个现实世界RGB和深度图像。每个图像的相机姿势和对象姿势的准确注释都以半自动化的方式进行,以方便在多种3D应用中使用数据集,例如形状重建,对象姿势估计,形状检索等。我们主要集中在多次学习的3D重建上,因为缺乏适当的世界上的实际世界,并填补了该数据,并证明了该数据的适当范围。整个注释的数据集以及注释工具和评估基线的源代码可在http://www.ocrtoc.org/3d-reconstruction.html上获得。

We present a dataset of 998 3D models of everyday tabletop objects along with their 847,000 real world RGB and depth images. Accurate annotations of camera poses and object poses for each image are performed in a semi-automated fashion to facilitate the use of the dataset for myriad 3D applications like shape reconstruction, object pose estimation, shape retrieval etc. We primarily focus on learned multi-view 3D reconstruction due to the lack of appropriate real world benchmark for the task and demonstrate that our dataset can fill that gap. The entire annotated dataset along with the source code for the annotation tools and evaluation baselines is available at http://www.ocrtoc.org/3d-reconstruction.html.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源