论文标题

使用患者索赔数据构建的医疗提供者网络中的区域医学跨机构合作

Regional medical inter-institutional cooperation in medical provider network constructed using patient claims data from Japan

论文作者

Ohki, Yu, Ikeda, Yuichi, Kunisawa, Susumu, Imanaka, Yuichi

论文摘要

衰老的世界人口需要可持续和高质量的医疗保健系统。为了检查医疗合作的效率,使用患者索赔数据构建了医疗提供者和医师网络。先前的研究表明,这些网络包含有关医疗合作的信息。但是,尚未考虑一系列医疗服务中多个医疗提供者的使用模式。此外,这些研究仅使用一般网络特征来代表医疗合作,但是它们的表现能力较低。为了克服这些限制,我们分析了医疗提供者网络,以研究其对医疗提供者之间在一系列医疗服务中合作提供的医疗保健质量的总体贡献。这项研究的重点是:i)从网络中提取特征的方法,ii)纳入医疗提供者的使用模式,以及iii)统计模型的表达能力。选择股骨颈部骨折作为目标疾病。为了构建医疗提供者网络,我们在2014年1月1日至2019年12月31日之间分析了患者的索赔数据。我们考虑了四种模型:使用节点强度和线性回归的模型,使用Node2Vec和Recressement使用特征表示模型,这是一种机器学习方法。结果表明,更强大的医疗服务提供者减少了住院期限。使用Node2VEC从医疗提供者网络中提取的医疗持续时间的医疗合作的总体贡献约为20%,比使用强度的模型高约20%。

The aging world population requires a sustainable and high-quality healthcare system. To examine the efficiency of medical cooperation, medical provider and physician networks were constructed using patient claims data. Previous studies have shown that these networks contain information on medical cooperation. However, the usage patterns of multiple medical providers in a series of medical services have not been considered. In addition, these studies used only general network features to represent medical cooperation, but their expressive ability was low. To overcome these limitations, we analyzed the medical provider network to examine its overall contribution to the quality of healthcare provided by cooperation between medical providers in a series of medical services. This study focused on: i) the method of feature extraction from the network, ii) incorporation of the usage pattern of medical providers, and iii) expressive ability of the statistical model. Femoral neck fractures were selected as the target disease. To build the medical provider networks, we analyzed the patient claims data from a single prefecture in Japan between January 1, 2014 and December 31, 2019. We considered four types of models: a model using node strength and linear regression to a model using feature representation by node2vec and regression tree ensemble, which is a machine learning method. The results showed that a stronger medical provider reduces the duration of hospital stay. The overall contribution of the medical cooperation to the duration of hospital stay extracted from the medical provider network using node2vec is approximately 20%, which is approximately 20 times higher than the model using strength.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源