论文标题
镜像对称性的高度周期性梯度吉布斯(Gibbs
Mirror symmetry of height-periodic gradient Gibbs measures of a SOS model on Cayley trees
论文作者
论文摘要
对于来自Cayley树上所有整数集的旋转值的固体固体(SOS)模型,我们提供了梯度Gibbs测量(GGM)。这样的度量对应于边界定律(这是在Cayley树的顶点上定义的无限维矢量值函数),该函数满足了无限的功能方程系统。我们给出了几种与Cayley树的顶点独立的边界定律的混凝土GGM,并且(作为无限维矢量)具有周期性的(非)镜像对称坐标。
For the solid-on-solid (SOS) model with spin values from the set of all integers on a Cayley tree we give gradient Gibbs measures (GGMs). Such a measure corresponds to a boundary law (which is an infinite-dimensional vector-valued function defined on vertices of the Cayley tree) satisfying an infinite system of functional equations. We give several concrete GGMs of boundary laws which are independent from vertices of the Cayley tree and (as an infinite-dimensional vector) have periodic, (non-)mirror symmetric coordinates.