论文标题
关于三个变量的Frobenius硬币问题
On the Frobenius Coin Problem in Three Variables
论文作者
论文摘要
Frobenius硬币问题有三个变量,对于三个积极的相对素数整数$ a_1 <a_2 <a_3 $,要求找到最大数字不可用的数字为$ a_1x_1+a_2x_2+a_2x_2+a_3x_3 $,具有非隔离整数系数,$ x_1 $,$ x_1 $,$ x_2 $ x_2 $和$ x_3 $和$ x_3 $。在本文中,我们提出了一种新的算法来解决此问题,该问题比我们的所有现有算法更简单,并且在$ \ mbox {o}(\ log a_1)$ steps中运行。
The Frobenius coin problem in three variables, for three positive relatively prime integers $a_1< a_2< a_3$ asks to find the largest number not representable as $a_1x_1+a_2x_2+a_3x_3$ with non-negative integer coefficients $x_1$, $x_2$ and $x_3$. In this article, we present a new algorithm to solve this problem that is faster and in our belief simpler than all existing algorithms and runs in $\mbox{O}(\log a_1)$ steps.