论文标题

基于GPGPU的平行蚂蚁菌落优化的概述和应用

Overview and Applications of GPGPU Based Parallel Ant Colony Optimization

论文作者

Mane, Sandeep U, Lokare, Pooja S., Gaikwad, Harsha R.

论文摘要

蚂蚁菌落优化算法是基于蚂蚁行为的宏伟启发式技术。并行计算是在可相当的执行时间中实现所需结果的一种手段。蚂蚁菌落优化的并行化用于解决大型和复杂的问题。本文讨论了对蚂蚁菌落优化及其各种应用的不同平行化方法的评论。事实证明,平行的蚂蚁菌落优化是一种成功约束问题(例如路由,调度,时间表等)的成功方法。蚂蚁菌落优化的并行化缩短了执行时间,增加了问题的大小,等等。

Ant Colony Optimization algorithm is a magnificent heuristics technique based on the behavior of ants. Parallel computing is a means to achieve the desired results in commensurable execution time. Parallelization of Ant Colony Optimization is utilized to solve large and complex problems. This paper discusses a review of different parallelization approaches for Ant Colony Optimization and its various applications. Parallel Ant Colony Optimization has proved to be a successful approach for highly constrained problems such as routing, scheduling, timetabling, etc. Parallelization of Ant Colony Optimization reduces the execution time, increases the size of the problem, etc.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源