论文标题
磁流体动力湍流的哈米尔顿港灵感梯度扩散模型
Port-Hamiltonian inspired gradient diffusion model for magnetohydrodynamic turbulence
论文作者
论文摘要
作为不可压缩的磁性流体动力学中理想不变的非线性光谱通量的减少表示,我们构建了一个结合了现象学考虑因素和确切非线性能量传递函数的几何分析的梯度扩散网络模型。保守的能量和跨效率的保守光谱传输的降低表示是哈米尔顿港的形式,它突出了这种方法的灵活性和模块化。雷诺数的数值实验最高$ 〜10^6 $产生惯性范围能量光谱的明确幂律签名。根据能量转移的主要时间尺度,观察到观察到观察到kolmogorov(-5/3),弱涡流(-2)或Iroshnikov-Kraichnan-like(-3/2)缩放指数。平均磁场中的各向异性湍流也已成功建模。湍流衰减的特征指数和观察到的跨疗法对能量转移的影响与文献一致,并且与理论结果一致。
As a reduced representation of the nonlinear spectral fluxes of ideal invariants in incompressible magnetohydrodynamics, we construct a gradient-diffusion network model that combines phenomenological considerations and geometrical analysis of the exact nonlinear energy transfer function. The reduced-order representation of the conservative spectral transport of energy and cross-helicity is of port-Hamiltonian form, which highlights the flexibility and modularity of this approach. Numerical experiments with Reynolds numbers up to $~10^6$ yield clear power-law signatures of inertial-range energy spectra. Depending on the dominant timescale of energy transfer, Kolmogorov (-5/3), weak-turbulence (-2), or Iroshnikov-Kraichnan-like (-3/2) scaling exponents are observed. Anisotropic turbulence in a mean magnetic field is successfully modelled as well. The characteristic exponents of turbulence decay and the observed influence of cross-helicity on the energy transfer are consistent with the literature and in agreement with theoretical results.