论文标题

Petavolts每米的血浆:Snowmass21白皮书

PetaVolts per meter Plasmonics: Snowmass21 White Paper

论文作者

Sahai, Aakash A., Golkowski, Mark, Gedney, Stephen, Katsouleas, Thomas, Andonian, Gerard, White, Glen, Stohr, Joachim, Muggli, Patric, Filipetto, Daniele, Zimmermann, Frank, Tajima, Toshiki, Mourou, Gerard, Resta-Lopez, Javier

论文摘要

等离子体模式提供了每米磁场实现Petavolts的潜力,除了基本物理学中的非coll派搜索外,还将改变对撞机开发的当前范例。 Petavolts每米等离子间依赖于具有合适组成原子和离子晶格结构的合适组合的材料传导带中固有的自由电子费米气体的集体振荡。作为平衡时无管带的电子密度,可以高达$ \ rm 10^{24} cm^{ - 3} $,$ \ rm 0.1 \ sqrt的电磁场,\ sqrt {\ rm n_0(\ rm n_0(\ rm n_0)模式。工程材料不仅允许高度可调的材料属性,而且非常严格地使克服破坏性的不稳定性成为主导批量介质中相互作用的不稳定性。由于自由电子费米气体的快速屏蔽,介电效应得到了强烈抑制。由于离子晶格,相应的电子能带和游离电子气体受量子机械效应的控制,因此与等离子体的比较仅是概念性的。基于此框架,至关重要的是,解决各种挑战的挑战,即在每米等离子化的花叶基础上,包括等离激元模式的稳定激发,同时考虑了它们对离子晶格的影响以及在飞跃时间尺度上的电子能量带结构。我们总结了正在进行的理论和实验性工作,并绘制了未来的策略。极端的等离子体场不仅可以将数十辆TEV带到触手可及的多PEV质量中心,而且可以通过在非授权者HEP中开放新颖的途径来塑造未来。鉴于这一诺言,我们邀请科学界有助于实现PV/M Plasonics的巨大潜力,并呼吁对美国和国际R \&D计划进行重大扩展。

Plasmonic modes offer the potential to achieve PetaVolts per meter fields, that would transform the current paradigm in collider development in addition to non-collider searches in fundamental physics. PetaVolts per meter plasmonics relies on collective oscillations of the free electron Fermi gas inherent in the conduction band of materials that have a suitable combination of constituent atoms and ionic lattice structure. As the conduction band free electron density, at equilibrium, can be as high as $\rm 10^{24}cm^{-3}$, electromagnetic fields of the order of $\rm 0.1 \sqrt{\rm n_0(10^{24}cm^{-3})} ~ PVm^{-1}$ can be sustained by plasmonic modes. Engineered materials not only allow highly tunable material properties but quite critically make it possible to overcome disruptive instabilities that dominate the interactions in bulk media. Due to rapid shielding by the free electron Fermi gas, dielectric effects are strongly suppressed. Because the ionic lattice, the corresponding electronic energy bands and the free electron gas are governed by quantum mechanical effects, comparisons with plasmas are merely notional. Based on this framework, it is critical to address various challenges that underlie PetaVolts per meter plasmonics including stable excitation of plasmonic modes while accounting for their effects on the ionic lattice and the electronic energy band structure over femtosecond timescales. We summarize the ongoing theoretical and experimental efforts as well as map out strategies for the future. Extreme plasmonic fields can shape the future by not only bringing tens of TeV to multi-PeV center-of-mass-energies within reach but also by opening novel pathways in non-collider HEP. In view of this promise, we invite the scientific community to help realize the immense potential of PV/m plasmonics and call for significant expansion of the US and international R\&D program.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源