论文标题
基于SDO/AIA差分排放测量值,太阳能周期24的纳米洛雷分布观测值
Nanoflare distributions over solar cycle 24 based on SDO/AIA differential emission measure observations
论文作者
论文摘要
研究了太阳周期24期间安静的Sun区域中的纳米体,并具有最佳的血浆诊断,以在不同水平的太阳能活动水平的情况下得出其能量分布和对冠状加热的贡献。使用了太阳动力学天文台(SDO)的大气成像组件(AIA)的极端紫外线(EUV)。我们在2011年至2018年之间分析了30个AIA/SDO图像系列,每个AIA/SDO图像系列均涵盖了$ 400 \ times 400 $ arcsec Quiet-Sun-sun-sun-sun-of Vield在两个小时内,还有12秒的节奏。差分排放度量(DEM)分析用于得出每个像素的发射度量(EM)和温度演化。我们使用基于阈值的算法检测纳米氟作为EM摄取,并从DEM观测值中得出其热能。纳米洛雷能量分布遵循的幂律表现出陡峭的略有变化($α= $ 2.02至2.47),但与太阳能活动水平无关。所有数据集的组合纳米分布分布在事件能量中涵盖了五个数量级($ 10^{24} \ Mathrm {〜}〜} 10^{29} \ Mathrm {〜Erg} $,带有PowerLaw Index $α= 2.28 = 2.28 \ PM0.03 $。 $(3.7 \ pm 1.6)\ times 10^4 \ mathrm {〜Erg〜cm^{ - 2} 〜S^{ - 1}} $的派生平均能量通量是比冠状加热要求小的数量级。我们发现派生的能量通量与太阳活性之间没有相关性。对空间分布的分析揭示了高能通量的簇(最高$ 3 \ times 10^5 \ mathrm {〜Erg〜cm^{ - 2} 〜S^{ - 1}} $),被扩展区域包围,其活动较低。与Heliose震动和磁成像仪(HMI)的磁化图的比较表明,高活动簇优先位于磁网络和上面的增强磁通密度的区域。
Nanoflares in quiet-Sun regions during solar cycle 24 are studied with the best available plasma diagnostics to derive their energy distribution and contribution to coronal heating during different levels of solar activity. Extreme ultraviolet (EUV) filters of the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) are used. We analyze 30 AIA/SDO image series between 2011 and 2018, each covering a $400 \times 400$ arcsec quiet-Sun field-of-view over two hours with a 12-second cadence. Differential emission measure (DEM) analysis is used to derive the emission measure (EM) and temperature evolution for each pixel. We detect nanoflares as EM-enhancements using a threshold-based algorithm and derive their thermal energy from the DEM observations. Nanoflare energy distributions follow power-laws that show slight variations in steepness ($α=$ 2.02 to 2.47) but no correlation to the solar activity level. The combined nanoflare distribution of all data sets covers five orders of magnitude in event energies ($10^{24} \mathrm{~to~} 10^{29} \mathrm{~erg}$) with a power-law index $α=2.28 \pm0.03$. The derived mean energy flux of $(3.7\pm 1.6)\times 10^4\mathrm{~erg~cm^{-2}~s^{-1}}$ is one order of magnitude smaller than the coronal heating requirement. We find no correlation between the derived energy flux and solar activity. Analysis of the spatial distribution reveals clusters of high energy flux (up to $3\times 10^5 \mathrm{~erg~cm^{-2}~s^{-1}}$) surrounded by extended regions with lower activity. Comparisons with magnetograms from the Helioseismic and Magnetic Imager (HMI) demonstrate that high-activity clusters are located preferentially in the magnetic network and above regions of enhanced magnetic flux density.