论文标题

Dehn Twist和nielsen的实现问题4个manifolds

Dehn twists and the Nielsen realization problem for spin 4-manifolds

论文作者

Konno, Hokuto

论文摘要

我们证明,对于带有非零签名的封闭式平滑旋转4个manifold $ x $,大约$(+2)$ - 或$(2)$ - $ x $中的dehn twist对于任何有限订单订单差异差异不同时。特别是,我们对Dehn Twist的映射类别产生的每个组产生的尼尔森实现问题负面回答。我们还表明,拓扑类别中的尼尔森实现问题与平滑类别之间存在差异,该类别的$ k3 $和$ k3 $和$ s^{2} \ times s^{2} $之间存在差异。证明的主要成分是Y. Kato的10/8类型不平等,以进行互动和改进。

We prove that, for a closed oriented smooth spin 4-manifold $X$ with non-zero signature, the Dehn twist about a $(+2)$- or $(-2)$-sphere in $X$ is not homotopic to any finite order diffeomorphism. In particular, we negatively answer the Nielsen realization problem for each group generated by the mapping class of a Dehn twist. We also show that there is a discrepancy between the Nielsen realization problems in the topological category and smooth category for connected sums of copies of $K3$ and $S^{2} \times S^{2}$. The main ingredients of the proofs are Y. Kato's 10/8-type inequality for involutions and a refinement of it.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源