论文标题
学习关系特定的表示形式,用于几个知识图的完成
Learning Relation-Specific Representations for Few-shot Knowledge Graph Completion
论文作者
论文摘要
近年来,人们对少量知识图(FKGC)的兴趣日益增加,该图表旨在推断出关于这种关系的一些参考三元组,从而推断出未看到的查询三元三元。现有FKGC方法的主要重点在于学习关系表示,可以反映查询和参考三元组共享的常见信息。为此,这些方法从头部和尾部实体的直接邻居中学习实体对表示,然后汇总参考实体对的表示。但是,只有从直接邻居那里学到的实体对代表可能具有较低的表现力,当相关实体稀疏直接邻居或与其他实体共享一个共同的当地社区。此外,仅仅对头部和尾部实体的语义信息进行建模不足以准确推断其关系信息,尤其是当它们具有多个关系时。为了解决这些问题,我们提出了一个特定于关系的上下文学习(RSCL)框架,该框架利用了三元组的图形上下文,以学习几乎没有射击关系的全球和本地关系特定的表示。具体而言,我们首先为每个三重提取图形上下文,这可以提供长期的实体关系依赖性。为了编码提取的图形上下文,我们提出了一个分层注意网络,以捕获三元组的上下文信息并突出显示实体的有价值的本地邻里信息。最后,我们设计了一个混合注意聚合器,以评估全球和本地一级查询三元组的可能性。两个公共数据集的实验结果表明,RSCL的表现优于最先进的FKGC方法。
Recent years have witnessed increasing interest in few-shot knowledge graph completion (FKGC), which aims to infer unseen query triples for a few-shot relation using a few reference triples about the relation. The primary focus of existing FKGC methods lies in learning relation representations that can reflect the common information shared by the query and reference triples. To this end, these methods learn entity-pair representations from the direct neighbors of head and tail entities, and then aggregate the representations of reference entity pairs. However, the entity-pair representations learned only from direct neighbors may have low expressiveness when the involved entities have sparse direct neighbors or share a common local neighborhood with other entities. Moreover, merely modeling the semantic information of head and tail entities is insufficient to accurately infer their relational information especially when they have multiple relations. To address these issues, we propose a Relation-Specific Context Learning (RSCL) framework, which exploits graph contexts of triples to learn global and local relation-specific representations for few-shot relations. Specifically, we first extract graph contexts for each triple, which can provide long-term entity-relation dependencies. To encode the extracted graph contexts, we then present a hierarchical attention network to capture contextualized information of triples and highlight valuable local neighborhood information of entities. Finally, we design a hybrid attention aggregator to evaluate the likelihood of the query triples at the global and local levels. Experimental results on two public datasets demonstrate that RSCL outperforms state-of-the-art FKGC methods.