论文标题

部分可观测时空混沌系统的无模型预测

Switching transformations for decentralized control of opinion patterns in signed networks: application to dynamic task allocation

论文作者

Bizyaeva, Anastasia, Amorim, Giovanna, Santos, Maria, Franci, Alessio, Leonard, Naomi Ehrich

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We propose a new decentralized design method to control opinion patterns on signed networks of agents making decisions about two options and to switch the network from any opinion pattern to a new desired one. Our method relies on switching transformations, which switch the sign of an agent's opinion at a stable equilibrium by flipping the sign of its local interactions with its neighbors. The global dynamical behavior of the switched network can be predicted rigorously when the original, and thus the witched, networks are structurally balanced. Structural balance ensures that the network dynamics are monotone, which makes the study of the basin of attraction of the various opinion patterns amenable to rigorous analysis through monotone systems theory. We illustrate the utility of the approach through scenarios motivated by multi-robot coordination and dynamic task allocation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源