论文标题
部分可观测时空混沌系统的无模型预测
Milliarcsecond astrometry for the Galilean moons using stellar occultations
论文作者
论文摘要
当太阳系对象通过恒星前面的观察者前方通过时,就会发生恒星掩星。该技术允许确定具有公里精度的刺生物的尺寸和形状。同样,这项技术限制了人体的姿势,反照率,密度等。在伽利略卫星的背景下,这些事件可以提供其最佳地面的星体,并以1 MAS的不确定性为单位($ \ sim $ \ sim $ 3 km,在对立的木星距离处的距离为$ 3 km)。我们组织了运动,并在2021年成功观察了IO(JI)的出色掩星,其中一项由Ganymede(JIII)于2020年,2019年由Europa(JII)进行了固有的掩星,其中一个车站在北美和南美。此外,我们重新分析了两次先前发表的事件,一次由欧罗巴在2016年,另一个由Ganymede在2017年进行。然后,我们符合已知的可靠卫星的已知3D形状,并确定其图形中心。这导致了在Milliarcsect级的不确定性的天文位置。从这些恒星掩星中获得的位置可以与动态模型一起使用,以确保高度准确的伽利亚卫星轨道。这些轨道可以帮助计划针对Jovian系统的未来空间探针,例如ESA的Juice和NASA的Europa Clipper,并允许对Flyby操纵的更有效的计划。
A stellar occultation occurs when a Solar System object passes in front of a star for an observer. This technique allows the determination of sizes and shapes of the occulting body with kilometer precision. Also, this technique constrains the occulting body's positions, albedos, densities, etc. In the context of the Galilean moons, these events can provide their best ground-based astrometry, with uncertainties in the order of 1 mas ($\sim$ 3 km at Jupiter's distance during opposition). We organized campaigns and successfully observed a stellar occultation by Io (JI) in 2021, one by Ganymede (JIII) in 2020, and one by Europa (JII) in 2019, with stations in North and South America. Also, we re-analyzed two previously published events, one by Europa in 2016 and another by Ganymede in 2017. Then, we fit the known 3D shape of the occulting satellite and determine its center of figure. That resulted in astrometric positions with uncertainties in the milliarcsecond level. The positions obtained from these stellar occultations can be used together with dynamical models to ensure highly accurate orbits of the Galilean moons. These orbits can help plan future space probes aiming at the Jovian system, such as JUICE by ESA and Europa Clipper by NASA, and allow more efficient planning of flyby maneuvers.