论文标题
迭代共模拟算法中无回滚系统处理的Costarica估计器
COSTARICA estimator for rollback-less systems handling in iterative co-simulation algorithms
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Co-simulation is widely used in the industry due to the emergence of modular dynamical models made up of interconnected, black-boxed systems. Several co-simulation algorithms have been developed, each with different properties and different levels of accuracy and robustness. Among them, the most accurate and reliable ones are the iterative ones, although they have a main drawback in common: the involved systems are required to be capable of rollback. The latter denotes the ability of a system to integrate over a co-simulation time step that has already been simulated. Non-rollback-capable system can only go forward in time and every integrated step is definitive. In practice, the industrial modelling and simulation platforms rarely produce rollback-capable systems. This paper proposes a solution that slightly changes the co-simulation methodology and that enables to use iterative co-simulation methods on a modular model which contains non-rollback-capable systems in case the latter represent ordinary differential equations. The idea is to replace such a system by a simplified version, which is used to estimate the results of the integrations instead of integrating the real system. Once the co-simulation method's surrogate iterations on these estimators predict the convergence on the co-simulation step, the non-rollback-capable systems genuinely integrate the step using the estimated solution on the other systems before moving forward, transforming the iterative co-simulation method into a non-iterative one.