论文标题

无线电干涉测量中的深度学习成像

Deep Learning-based Imaging in Radio Interferometry

论文作者

Schmidt, Kevin, Geyer, Felix, Fröse, Stefan, Blomenkamp, Paul-Simon, Brüggen, Marcus, de Gasperin, Francesco, Elsässer, Dominik, Rhode, Wolfgang

论文摘要

无线电干涉仪的稀疏布局导致天空在傅立叶空间中的采样不完整,从而导致重建图像中的伪影。清洁这些系统效应对于射电体过滤图像的科学使用至关重要。已建立的重建方法通常是耗时的,需要专家知识,并且缺乏可重复性。我们已经开发了一种原型深度学习的方法,该方法以方便的方式生成可重复的图像。为此,我们利用卷积神经网络的效率从傅立叶空间中不完整的信息中重建图像数据。神经网络架构的灵感来自利用残差块的超分辨率模型。使用由高斯组件组成的射电星系的模拟数据我们训练深度学习模型,其重建能力是使用各种措施来量化的。通过将所得的预测与真实的源图像进行比较,可以在干净和嘈杂的输入数据上评估重建性能。我们发现源角度和大小得到很好的再现,而恢复的磁通显示出很大的散射,尽管并不比没有微调的现有方法差。最后,我们使用深度学习提出了更高级的方法,其中包括不确定性估计值和一个分析较大图像的概念。

The sparse layouts of radio interferometers result in an incomplete sampling of the sky in Fourier space which leads to artifacts in the reconstructed images. Cleaning these systematic effects is essential for the scientific use of radiointerferometric images. Established reconstruction methods are often time-consuming, require expert-knowledge, and suffer from a lack of reproducibility. We have developed a prototype Deep Learning-based method that generates reproducible images in an expedient fashion. To this end, we take advantage of the efficiency of Convolutional Neural Networks to reconstruct image data from incomplete information in Fourier space. The Neural Network architecture is inspired by super-resolution models that utilize residual blocks. Using simulated data of radio galaxies that are composed of Gaussian components we train Deep Learning models whose reconstruction capability is quantified using various measures. The reconstruction performance is evaluated on clean and noisy input data by comparing the resulting predictions with the true source images. We find that source angles and sizes are well reproduced, while the recovered fluxes show substantial scatter, albeit not worse than existing methods without fine-tuning. Finally, we propose more advanced approaches using Deep Learning that include uncertainty estimates and a concept to analyze larger images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源