论文标题
Van der waals Ant-Waals抗Fiferromagnet Crsbr的动态磁跨界
Dynamic Magnetic Crossover at the Origin of the Hidden-Order in van der Waals Antiferromagnet CrSBr
论文作者
论文摘要
Van der Waals材料CRSBR作为有希望的二维磁铁脱颖而出。尤其是,其高磁性排序温度和多功能磁通型特性使CRSBR成为二维磁性材料新兴田间新设备的重要候选者。迄今为止,尚未完全阐明CRSBR的磁性和结构特性。在这里,我们通过全面结合中子散射,MUON自旋弛豫光谱,同步加速器X射线衍射和磁化测量来报告该材料的详细依赖温度依赖性磁性和结构特性。我们证明,该材料经历了$ t _ {\ rm n} \ $ 140 K以下的A型抗铁磁状态的过渡,其明显的二维特征是从确定的$β\ $β\ $ 0.18的确定关键指数中推出的。在我们对田间诱导的元磁过渡的分析中,我们发现单层中的铁磁相关性在该材料中显然持续到néel温度以上。此外,我们揭示了远程磁性序列状态内的低温(即$ t <t <t _ {\ rm n} $)。我们发现它与磁波动的放缓有关,并伴随着内部磁场的连续重新定位。在冷却$ t_s $ $ \ $ 100 k以下时,发生这种情况,直到旋转冷冻过程以$ t $* $* $ \ $ 40 k的速度发生。我们争辩说,这种复杂的动态行为反映了磁性交叉的磁性交叉,这是由内轴置各向异性驱动的,这最终是由材料混合材料特征引起的。我们的发现表明,CRSBR的磁性和结构特性扩大了其作为基于自旋电子设备的组件的潜在应用。
The van der Waals material CrSBr stands out as a promising two-dimensional magnet. Especially, its high magnetic ordering temperature and versatile magneto-transport properties make CrSBr an important candidate for new devices in the emergent field of two-dimensional magnetic materials. To date, the magnetic and structural properties of CrSBr have not been fully elucidated. Here, we report on the detailed temperature-dependent magnetic and structural properties of this material, by comprehensively combining neutron scattering, muon spin relaxation spectroscopy, synchrotron X-ray diffraction, and magnetization measurements. We evidence that this material undergoes a transition to an A-type antiferromagnetic state below $T_{\rm N} \approx$ 140 K, with a pronounced two-dimensional character as deduced from the determined critical exponent of $β\approx $ 0.18. In our analysis of the field-induced metamagnetic transition, we find that the ferromagnetic correlations within the monolayers persist clearly above the Néel temperature in this material. Furthermore, we unravel the low-temperature (i.e. $T < T_{\rm N}$) magnetic hidden order within the long-range magnetically ordered state. We find that it is associated to a slowing down of the magnetic fluctuations, accompanied by a continuous reorientation of the internal magnetic field. These take place upon cooling below $T_s$ $\approx$ 100 K, until a spin freezing process occurs at $T$* $\approx$ 40 K. We argue this complex dynamic behavior to reflect a magnetic crossover driven by the in-plane uniaxial anisotropy, which is ultimately caused by the mixed-anion character of the material. Our findings indicate that the magnetic and structural properties of CrSBr widen its potential application as a component for spin-based electronic devices.