论文标题

自动算法性能预测中的可解释景观分析

Explainable Landscape Analysis in Automated Algorithm Performance Prediction

论文作者

Trajanov, Risto, Dimeski, Stefan, Popovski, Martin, Korošec, Peter, Eftimov, Tome

论文摘要

为了选择解决该问题实例的最合适的算法,预测新问题实例中优化算法的性能至关重要。为此,最近的研究使用一组与优化算法相关的性能链接的问题景观特征学习了监督的机器学习(ML)模型。但是,这些模型是黑框,其唯一目标是实现良好的预测性能,而无需提供解释哪些景观特征对优化算法实现的性能的预测最大的贡献。在这项研究中,我们研究了自动化算法性能预测中不同监督ML模型使用的问题景观特征的表现力。实验结果指出,监督ML方法的选择至关重要,因为不同监督的ML回归模型利用问题景观特征的不同,并且在哪些景观特征最有用的景观特征方面没有共同的模式。

Predicting the performance of an optimization algorithm on a new problem instance is crucial in order to select the most appropriate algorithm for solving that problem instance. For this purpose, recent studies learn a supervised machine learning (ML) model using a set of problem landscape features linked to the performance achieved by the optimization algorithm. However, these models are black-box with the only goal of achieving good predictive performance, without providing explanations which landscape features contribute the most to the prediction of the performance achieved by the optimization algorithm. In this study, we investigate the expressiveness of problem landscape features utilized by different supervised ML models in automated algorithm performance prediction. The experimental results point out that the selection of the supervised ML method is crucial, since different supervised ML regression models utilize the problem landscape features differently and there is no common pattern with regard to which landscape features are the most informative.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源