论文标题
在SMEFT中的Monolepton生产至$ \ Mathcal O(1/λ^4)$及以后
Monolepton production in SMEFT to $\mathcal O(1/Λ^4)$ and beyond
论文作者
论文摘要
我们将$ pp \ to计算为\ ell^{+}ν,\ ell^ - \barν$ to $ {\ cal {o}}}(1/λ^4)$在标准模型有效场理论(SMEFT)框架中。特别是,我们计算了第六和八个操作员的四弗里尔术贡献,这些贡献在大质量能量的大中心主导。我们探索$ \ Mathcal O(1/λ^4)$和$ \ Mathcal O(1/λ^2)$的相对大小,用于各种运动式制度和关于Wilson系数的假设。还提供了DRELL-YAN生产的结果$ pp \ to \ ell^+\ ell^ - $ at $ {\ cal {o}}(1/λ^4)$。此外,我们为$ pp \ to \ ell^{+}ν,\ ell^ - \barν,pp \ to \ ell^+ell^ - $ of tunyary质量维度开发了四个fermion联系项的表格。这使我们能够在SMEFT框架中估算更高维度(尺寸$> 8 $)的效果。
We calculate $pp \to \ell^{+}ν, \ell^-\bar ν$ to ${\cal{O}}(1/Λ^4)$ within the Standard Model Effective Field Theory (SMEFT) framework. In particular, we calculate the four-fermion contribution from dimension six and eight operators, which dominates at large center of mass energy. We explore the relative size of the $\mathcal O(1/Λ^4)$ and $\mathcal O(1/Λ^2)$ results for various kinematic regimes and assumptions about the Wilson coefficients. Results for Drell-Yan production $pp \to \ell^+\ell^-$ at ${\cal{O}}(1/Λ^4)$ are also provided. Additionally, we develop the form for four fermion contact term contributions to $pp \to \ell^{+}ν, \ell^-\bar ν, pp \to \ell^+\ell^-$ of arbitrary mass dimension. This allows us to estimate the effects from even higher dimensional (dimension $> 8$) terms in the SMEFT framework.