论文标题

在ADAS案例研究中使用模拟综合生物启发的基于基于搜索的测试的机器学习测试

Machine Learning Testing in an ADAS Case Study Using Simulation-Integrated Bio-Inspired Search-Based Testing

论文作者

Moghadam, Mahshid Helali, Borg, Markus, Saadatmand, Mehrdad, Mousavirad, Seyed Jalaleddin, Bohlin, Markus, Lisper, Björn

论文摘要

本文介绍了更深层的扩展版本,这是一种基于搜索的仿真综合测试解决方案,该解决方案生成了用于测试基于神经网络的深度网络巷道保存系统的浏览故障测试方案。在新提出的版本中,我们使用了一组新的生物启发搜索算法,遗传算法(GA),$(μ+λ)$和$(μ,λ)$进化策略(ES)和粒子群优化(PSO),这些策略(PSO)利用了质量的人群种子和域名种子和域名跨测试量的模型,用于模型的模型,以实现型号的模型。为了证明更深层次的新测试生成器的功能,我们就SBST 2021的网络物理系统测试竞争的五个参与工具的结果进行了经验评估和比较测试ML驱动的车道保存系统的方案。他们可以在有限的测试时间预算,高目标故障严重性和严格的速度限制限制下促进测试方案多样性的同时触发几个失败。

This paper presents an extended version of Deeper, a search-based simulation-integrated test solution that generates failure-revealing test scenarios for testing a deep neural network-based lane-keeping system. In the newly proposed version, we utilize a new set of bio-inspired search algorithms, genetic algorithm (GA), $(μ+λ)$ and $(μ,λ)$ evolution strategies (ES), and particle swarm optimization (PSO), that leverage a quality population seed and domain-specific cross-over and mutation operations tailored for the presentation model used for modeling the test scenarios. In order to demonstrate the capabilities of the new test generators within Deeper, we carry out an empirical evaluation and comparison with regard to the results of five participating tools in the cyber-physical systems testing competition at SBST 2021. Our evaluation shows the newly proposed test generators in Deeper not only represent a considerable improvement on the previous version but also prove to be effective and efficient in provoking a considerable number of diverse failure-revealing test scenarios for testing an ML-driven lane-keeping system. They can trigger several failures while promoting test scenario diversity, under a limited test time budget, high target failure severity, and strict speed limit constraints.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源