论文标题

高大建筑物的风险规避风险不确定的风条件

Risk-averse design of tall buildings for uncertain wind conditions

论文作者

Kodakkal, Anoop, Keith, Brendan, Khristenko, Ustim, Apostolatos, Andreas, Bletzinger, Kai-Uwe, Wohlmuth, Barbara, Wuechner, Roland

论文摘要

通过空气动力形状修改降低风力激发的强度是减轻超托托尔建筑物的反作用力,降低建筑和维护成本并改善未来居民舒适的主要策略。为此,与行业所采用的试验和错误方法相比,与最新的随机优化算法结合使用的计算流体动力学(CFD)更有希望。本研究提出并研究了一种新型的方法,可以在高速度,地形条件和风流方向上融合了高大的建筑结构的风险形状优化。 CFD使用了身体构合的有限元近似,并通过重新汇集流体域而结合了不同的风向。建筑物底部的弯矩被最小化,从而导致建筑物成本降低,从而减少了碳足迹。在不确定的流入风条件下,对代表性建筑物的扭曲和缩小的风险中性和避免风险的优化均已进行了校准,以适合瑞士巴塞尔市的可自由利用的特定地点数据。规避风险的策略使用有条件的价值风险来优化在最糟糕的10%的加载条件下出现的低概率高结果事件。自适应采样用于加速基于梯度的随机优化管道。自适应方法易于实现,对于计算密集型模拟特别有用,因为梯度样本的数量仅随着最佳设计算法的收敛而增长。与风险中性优化的几何形状相比,最终规避风险的建筑几何形状的性能非常有利,因此证明了计算风力工程中规避风险的设计方法的有效性。

Reducing the intensity of wind excitation via aerodynamic shape modification is a major strategy to mitigate the reaction forces on supertall buildings, reduce construction and maintenance costs, and improve the comfort of future occupants. To this end, computational fluid dynamics (CFD) combined with state-of-the-art stochastic optimization algorithms is more promising than the trial and error approach adopted by the industry. The present study proposes and investigates a novel approach to risk-averse shape optimization of tall building structures that incorporates site-specific uncertainties in the wind velocity, terrain conditions, and wind flow direction. A body-fitted finite element approximation is used for the CFD with different wind directions incorporated by re-meshing the fluid domain. The bending moment at the base of the building is minimized, resulting in a building with reduced cost, material, and hence, a reduced carbon footprint. Both risk-neutral and risk-averse optimization of the twist and tapering of a representative building are presented under uncertain inflow wind conditions that have been calibrated to fit freely-available site-specific data from Basel, Switzerland. The risk-averse strategy uses the conditional value-at-risk to optimize for the low-probability high-consequence events appearing in the worst 10% of loading conditions. Adaptive sampling is used to accelerate the gradient-based stochastic optimization pipeline. The adaptive method is easy to implement and particularly helpful for compute-intensive simulations because the number of gradient samples grows only as the optimal design algorithm converges. The performance of the final risk-averse building geometry is exceptionally favorable when compared to the risk-neutral optimized geometry, thus, demonstrating the effectiveness of the risk-averse design approach in computational wind engineering.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源