论文标题
一种随机汉密尔顿配方,用于耗散粒子动力学
A stochastic Hamiltonian formulation applied to dissipative particle dynamics
论文作者
论文摘要
在本文中,提出了随机的哈密顿公式(SHF),并应用于耗散粒子动力学(DPD)模拟。作为哈密顿动力学到随机耗散系统的扩展,SHF为构建有效的数值积分器提供了必要的基础和极大的便利。作为第一次尝试,我们开发了基于SHF的Störmer-佛经类型的方案,该方案是针对不包括外部力量的确定性的哈密顿系统的结构,DPD中的耗散力。通过研究阻尼的Kubo振荡器来显示这些方案的长期行为。特别是,提出的方案包括常规的Groot-Warren修改后的速度 - 词语方法以及Gibson-Chen-Chynoweth的修改版本作为特殊情况。这些方案应用于DPD模拟并进行数值分析。
In this paper, a stochastic Hamiltonian formulation (SHF) is proposed and applied to dissipative particle dynamics (DPD) simulations. As an extension of Hamiltonian dynamics to stochastic dissipative systems, the SHF provides necessary foundations and great convenience for constructing efficient numerical integrators. As a first attempt, we develop the Störmer--Verlet type of schemes based on the SHF, which are structure-preserving for deterministic Hamiltonian systems without external forces, the dissipative forces in DPD. Long-time behaviour of the schemes is shown numerically by studying the damped Kubo oscillator. In particular, the proposed schemes include the conventional Groot-Warren's modified velocity-Verlet method and a modified version of Gibson-Chen-Chynoweth as special cases. The schemes are applied to DPD simulations and analysed numerically.