论文标题
保留隐私的个性化健身推荐系统(P3FITREC):一种多层深度学习方法
Privacy-Preserving Personalized Fitness Recommender System (P3FitRec): A Multi-level Deep Learning Approach
论文作者
论文摘要
在机器学习算法的帮助下,推荐系统已成功地用于许多领域。但是,此类应用程序倾向于使用多维用户数据,这引起了人们对违反用户隐私的广泛关注。同时,可穿戴技术使用户能够通过嵌入式传感器收集与健身相关的数据,以监视其状况或实现个性化的健身目标。在本文中,我们提出了一种新颖的隐私感知性健身推荐系统。我们介绍了一个多级深度学习框架,该框架从大规模的真实健身数据集中学习了重要功能,该数据集是从可穿戴的物联网设备收集的,以获得智能的健身建议。与大多数现有方法不同,我们的方法通过从感官数据中推断用户的健身特征,从而最大程度地降低了明确收集用户身份或生物识别信息的需求,例如名称,年龄,年龄,身高,体重,从而实现了个性化。特别是,我们提出的模型和算法预测(a)个性化的运动距离建议,以帮助用户实现目标卡路里,(b)个性化的速度序列建议,鉴于锻炼的性质和所选路线的性质,以及(c)个性化的心率序列来调整运动速度,并指导未来锻炼的潜在健康状况的用户。与类似研究相比,我们对现实世界中FITBIT数据集的实验评估表明,在预测运动距离,速度序列和心率序列方面具有很高的精度。此外,我们的方法与现有研究相比是新颖的,因为它不需要收集和使用用户敏感信息,因此可以保留用户的隐私。
Recommender systems have been successfully used in many domains with the help of machine learning algorithms. However, such applications tend to use multi-dimensional user data, which has raised widespread concerns about the breach of users privacy. Meanwhile, wearable technologies have enabled users to collect fitness-related data through embedded sensors to monitor their conditions or achieve personalized fitness goals. In this paper, we propose a novel privacy-aware personalized fitness recommender system. We introduce a multi-level deep learning framework that learns important features from a large-scale real fitness dataset that is collected from wearable IoT devices to derive intelligent fitness recommendations. Unlike most existing approaches, our approach achieves personalization by inferring the fitness characteristics of users from sensory data and thus minimizing the need for explicitly collecting user identity or biometric information, such as name, age, height, weight. In particular, our proposed models and algorithms predict (a) personalized exercise distance recommendations to help users to achieve target calories, (b) personalized speed sequence recommendations to adjust exercise speed given the nature of the exercise and the chosen route, and (c) personalized heart rate sequence to guide the user of the potential health status for future exercises. Our experimental evaluation on a real-world Fitbit dataset demonstrated high accuracy in predicting exercise distance, speed sequence, and heart rate sequence compared to similar studies. Furthermore, our approach is novel compared to existing studies as it does not require collecting and using users sensitive information, and thus it preserves the users privacy.